Thermal Spray Coatings Workshop: Sensors, Modeling and Control Strategies Summary of a Workshop Held at National Institute of Standards and Technology Frank S. Biancaniello Stephen D. Ridder U.S. DEPARTMENT OF COMMERCE Technology Administration Metallurgy Division Materials Science and Engineering Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Thermal Spray Coatings Workshop: Sensors, Modeling and Control Strategies Summary of a Workshop Held at National Institute of Standards and Technology # Frank S. Biancaniello Stephen D. Ridder U.S. DEPARTMENT OF COMMERCE Technology Administration Metallurgy Division Materials Science and Engineering Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 November 1998 U.S. DEPARTMENT OF COMMERCE William M. Daley, Secretary TECHNOLOGY ADMINISTRATION Gary R. Bachula, Acting Under Secretary for Technology NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY Raymond G. Kammer, Director Table of Contents Page i ### TABLE OF CONTENTS | TABLE OF CONTENTS | | |--|-------------------------------------| | DISCLAIMER | ii | | WORKSHOP SUMMARY | | | Purpose | | | WORKSHOP AGENDA | | | PRESENTATIONS | | | Introductory Presentations | | | Workshop Presentations | | | DISCUSSION | 4 | | CONCLUSIONS | 5 | | ATTENDANCE LIST | | | Industry | | | Academia | 9 | | National Labs (non NIST) | | | NIST | 11 | | PRESENTATION SLIDES | | | NIST Ceramic Coatings Program | S. J. Dapkunas (NIST) | | Process Diagnostics | S. D. Ridder (NIST) | | Spectroscopy Measurements | D. W. Bonnell (NIST) | | Thermal Imaging | J. E. Craig (Stratonics) | | Numerical Simulation of Underexpanded Jets | A. Johnson (NIST) | | Process Control | S. A. Osella (ICT) | | Sensors and Controls for Thermal Spray: Is there a need? | C. C. Berndt (SUNY Stony Brook) 59 | | Currently used Sensors | C. Moreau (NRC-CNRC) 65 | | Measurement of DC Plasma Arc Fluctuations | J. Heberlein (U. of Minnesota) 83 | | Enthalpy Probe | M. Boulos (U. of Sherbrooke) 87 | | Impact and Solidification of Molten Nickel Droplets | W. H. Hofmeister (Vanderbilt U.) 99 | | NIST THERMAL SPRAY RESEARCH PROGRAM | | Page ii Disclaimer #### **DISCLAIMER** This report is intended as a record of the presentations and discussions which took place at a NIST Metallurgy Division sponsored workshop. The opinions, conclusions, or recommendations that are expressed herein are those of the organizers or individual presenters and do not necessarily reflect the views of NIST. All references to commercial equipment in this report are for identification purposes only and in no way constitute any endorsement or evaluation of the relative merits of such equipment by NIST. RETURN TO TABLE OF CONTENTS Workshop Summary Page 1 #### **WORKSHOP SUMMARY** #### **Purpose** The NIST Metallurgy Division has initiated a research program to investigate coatings produced by thermal spray (TS) techniques. The focus of this research is the development of measurement tools that will aid in the understanding and/or control of the plasma spray process. This process uses plasma jets (generated by either DC or AC arcs) to melt or soften coating feed-stocks and then propel this material onto various substrates. The geometry and operating parameters of the plasma jet hardware, or "gun", depend on the intended function of the resulting TS coated part. Currently TS coatings are produced by skilled technicians, however, it is now being adapted for automatic control using robotics. Intelligent Processing incorporating expert systems will probably be employed in most advanced systems. This move to robotics is not only to reduce costs, but to improve the reliability of spray coatings and thus enable the use of coatings in high volume applications such as automotive components and property critical devices such as the proposed high-efficiency gas turbines. Recently a number of advances have been made in new measurement systems, sensors, and modeling techniques that can lead to improved design and control of thermal spray processes. The objectives of this workshop were to present descriptions of some of these advances and their industrial applications, demonstrate some of the systems currently available or under development at NIST, and provide a forum to allow discussion of the current industrial measurement needs for thermal spray coatings. RETURN TO TABLE OF CONTENTS Page 2 Workshop Agenda #### WORKSHOP AGENDA | 9:00 | Introduction J. R. Manning (NIST) | |-------|---| | 9:05 | Overview of NIST Mission | | 9:10 | ATP Programs R. J. Schaefer (NIST) | | 9:20 | MSEL Programs | | 9:30 | NIST Prior Expertise in Intelligent Processing | | 9:40 | NIST Previous Discussions with Thermal Spray Industry F. S. Biancaniello (NIST) | | 9:45 | NIST Current Status and Future Plans (intro with SBIR activities) S. D. Ridder (NIST) | | | Diagnostics (high-speed video, cinema, holography, spectroscopy, etc.) | | 9:50 | High-Speed Video S. D. Ridder (NIST) | | 10:00 | Spectroscopy Measurements D. W. Bonnell (NIST) | | | Sensors (thermal imaging, velocity, size, etc.) | | 10:15 | Thermal Imaging J. E. Craig (Stratonics) | | | Modeling (CFD, schlieren, etc.) | | 10:30 | Numerical Simulation of Underexpanded Jets A. Johnson (NIST) | | | Expert Systems (parameterization, truth tables, etc.) | | 10:45 | Process Control S. A. Osella (ICT) | | 11:00 | Break | | 11:15 | Demonstration of NIST Spray Facility | | | (Industrial Building, Room B122) | | | Importance of Sensors and Diagnostics in controlling Industrial Thermal Spray Processes | | 11:45 | Overview | | 12:00 | Currently used Sensors | | 12:15 | Modeling of Thermal Spray J. Heberlein (U. of Minnesota) | | 12:30 | Enthalpy Probe | | 12:45 | Imaging for Rapid Prototyping W. H. Hofmeister (Vanderbilt U.) | | 1:00 | Lunch | | 2:00 | Industrial Needs as viewed by equipment manufacturers (intro) D. Crawmer (Praxair) | | 2:05 | Discussion and Suggestions concerning industrial needs participants | | 3:30 | adjourn | | | | RETURN TO TABLE OF CONTENTS Presentations Page 3 #### **PRESENTATIONS** #### **Introductory Presentations** The program started with an introductory welcome by **J. R. Manning**, group leader for Metallurgical Processing in the NIST Metallurgy Division. **C. A. Handwerker**, Chief of NIST Metallurgy Division, then gave an overview of the NIST mission. This was followed by slide presentations by **R. J. Schaefer** outlining the NIST Advanced Technology Program (ATP) and **S. J. Dapkunas**, of the NIST Ceramics Division, on the current MSEL Ceramics Coating Program. #### **Workshop Presentations** Following the introductory slides were presentations of NIST work. **S. D. Ridder** of the NIST Metallurgy Division presented slides to provide an overview of the NIST Metallurgy Division's previous research in intelligent processing, imaging diagnostics, and advanced sensors. **F. S. Biancaniello**, also of the NIST Metallurgy Division presented slides outlining the recent discussions between NIST researchers and the thermal spray industry. These presentations were intended to show the attendees the current status of research in metals processing at NIST and how these recent activities on powder production are relevant to new programs being organized on thermal spray processing. New research results on non-contact spectrometer-based temperature measurements of particles in flight within a plasma jet were presented by **D. Bonnell**. He discussed correction of the measured spectrum by subtracting emission from the plume. The technique appears to be working well for temperature measurements but showed the puzzling result of temperature increasing with distance of travel. The next speaker, **J. Craig** (Stratonics), showed results from a new imaging pyrometer system based on 2 images, typically at 950 nm and 700 nm, in which the pixels of the two images match precisely. He concluded that temperature decreases with distance of travel. Work on calibration of this new sensor continues through funding provided by a NIST Small Business Innovative Research (SBIR) award. - **A. Johnson** (NIST Fluid Flow Group) presented slides on techniques for Computational Fluid Dynamics (CFD) modeling of underexpanded gas jets as they apply to a thermal spray plasma jet. This NIST effort on CFD modeling of compressible fluid jets was initiated several years ago to provide a software tool that could be used by engineers to help optimize the design of gas atomizers used for the production of metal powder. This CFD tool has been applied to the design of commercial gas atomizers with significant improvements in production efficiencies. It is likely that similar studies of thermal spray gas jet assemblies could lead to more efficient and/or more controllable thermal spray gun designs. - **S. A. Osella** (Intelligent Computing Technologies, Inc.) presented slides on a novel technique to develop and implement expert system driven process controllers. The software tool shown in these slides was developed by ICT using funding provided by a NIST SBIR award. The need for this tool was realized during the development of an expert system controller for the NIST gas atomizer. This software can help organize and validate complex process controllers as used for a thermal spray system. The attendees were brought to the NIST thermal spray facility for a demonstration of the Stratonics sensor measuring in-flight particle temperature and velocity of plasma sprayed zirconia powder. Following this laboratory demonstration several invited speakers presented their views on various aspects of the thermal spray process. **C. Berndt** (SUNY Stony Brook) pointed out the need for sensors to be complementary to modeling, and to
be related to real sprayers. An abundance of measurements have already been made but standards are needed. One important subject is thermal spray processing of nanoparticles, on which a conference will be held next year. An economic analysis was shown that outlined the current and future projection of the thermal spray market. Page 4 Discussion **C. Moreau** (NRC-CNRC) pointed out the need to understand three zones: zone 1, where heat is generated, and voltage fluctuations depending on the surface of the electrode are generated: zone 2, in which the particles are heated and accelerated: and zone 3, in which the coating builds up. - **J. Heberlein** (U. of Minnesota) described work to characterize the environment that heats the powder. This requires small time-scale resolution monitoring of sound and voltage fluctuations. Using a 100 µs to 1 ms time-scale resolution could provide useful data concerning the arc characteristics related to cathode and anode erosion that ultimately affect the output flux of torch power. - **M. Boulos** (U. of Sherbrooke) pointed out that cold particles entrained in the plasma will not be detected by emission techniques, but they can ruin a coating. He described an enthalpy probe which is intrusive but yields good data. - **W. Hofmeister** (Vanderbilt U.) described NASA-sponsored work on velocity of solidification of undercooled melts, droplet splats with G. Trapaga of MIT, and application of high-speed thermal imaging to the LENS process (a net shape processing technique that consolidates powder with a high-power laser). #### DISCUSSION The discussion was lead by Darryl Crawmer of Praxair. He started the discussion by presenting his own views, as an equipment manufacturer, of industrial needs. The first area he mentioned was SRM's. We already have one for particle size, and Phase II of this is coming out. They need one for X-ray diffraction to show the crystallography of yittria-stabilized zirconia. The major point of his discussion, however, was the need to bring the thermal spray process under control: at present it is not. If the process were well controlled, post-processing quality control would be a moot point. There is a long way to go before plasma spray can be a 6 σ process. Control of the spray process has moved from the old location at the back of the gun (i.e., controlling the applied voltage and current) to control of the energy at the front of the gun (10 years old but still not widely accepted). Still some distance off, in development and acceptance, is control based on particle velocities, temperatures, and trajectories, or characterization of the deposit itself. Advanced control technology needs to be embedded in such a way that it can be used by real operators, not skilled technicians, and so that it will be available to users beyond the high-tech companies such as Praxair, GE, or Howmet. In the discussion, it was asked what will inspire people to invest in advanced technology. The response was the opening of new markets which will become available with higher reliability. Most plasma spray is now at 1σ (68%), while high-end shops try to be at 2σ (95%). This is not acceptable when failure of a plasma spray process could shut down a production facility. Another example is coating of a paper roll, which can involve spraying for 24 hours at a time, so there is a need to know if the deposit is uniform. The drive for these sensors is working from the top down: Praxair, Tafa, GE, P&W, and vendors are developing tools. Interest from the automobile industry is not huge at present, but bore coating could become a driver. Big customers are not currently putting pressure on small suppliers to do more. Currently, in a \$10 million shop, \$3 million is used to purchase powder, easily half of which is discarded due to various process inefficiencies. The cost of wasted powder (as well as any other costs resulting from poor process control) is simply passed on to the customer, a situation which will change only as the competition increases. Users want a "magic wand" to stabilize the process - better predictability, reliability, etc. They need better process control, substrate control, and powder control, all parameters that contribute to control of the coating structure. Current practice is to qualify the spray booth at the start of each day, which is not reliable if the gun deteriorates too fast. Current practice by many is reputed to be "if it sticks, ship it," or application of the "hammer test." A sensor for residual stresses would be highly desirable. Powder supply has huge day-to-day and lot-to-lot variability, and most customers will not pay extra for Conclusions Page 5 more uniform powder. Customers can specify powder characteristics, with GE, Pratt, and RR driving this but the sprayers will pay extra for the powder only if the specifications are tightened. Results can change with time as a result of wear of the electrodes (anode and cathode). Sensors are desired which are fast, cheap, easy, and non-intrusive. Sensors, in order of importance, are: - 1) Temperature - 2) Velocity - 3) Trajectory - 4) (others) - 5) Residual Stress Temperature, velocity, and trajectory sensors are here but implementation is the problem. A pulsed laser visualization system costs \$80k to \$100k. A few sales might be made of a \$50k system, to high-end users, a system for \$10k to \$20k would sell to every shop. It may be necessary to be more selective in what you need, to cut down on the price. Benchmarking could be done at NIST to relate product to input and process conditions - a typical NIST activity. An ASM subcommittee is trying to standardize metallographic techniques to prepare coatings for examination, so that coatings can be more readily compared to each other. The first standard procedures should address zirconia powders and coatings followed by similar procedures for WC. We need standardized powder and standardized evaluation of coatings. Education, new technologies, and patience are needed. #### **CONCLUSIONS** Thermal spray technology could attain much more widespread use if one could attain higher levels of reliability, predictability, repeatability, etc., the same characteristics which were identified as needs for numerous surface engineering technologies in the recent ATP-sponsored workshop. High volume markets such as the transportation and consumer electronics industries are reluctant to take advantage of the potential cost savings derived from using thermal spray to replace other processes until they are convinced that the reliability issues are addressed. This generally means that the coatings must be consistent from one production run to the next using feedstock from different sources. There appeared to be a consensus that these characteristics could be achieved by control based on the temperature, velocity, and trajectory of the particulate materials. This would compensate for variability due to differences in powder feed stock and erosion of the plasma gun electrodes. Characterization of gun voltage in the temporal domain with a 100 µs to 1 ms time-scale should be investigated as a means to quantify erosion of the electrodes. Currently available sensor/control systems (pulsed laser illuminated) are too expensive (\$80k to \$100k) to be attractive. At \$50k, a few systems might be sold to high technology users, and at \$10k to \$20k the systems would probably become universal. There is some concern among those producing sensors as to the current and future market for the sale of spray equipment. This has a direct effect on the potential market for sensor and control systems. If this total spray processing equipment market is not sufficiently large, then sensor and control system sales will not reach the volume required to realize price reductions. One likely development that will provide increased markets for sensor and control systems is that many of the sensors needed for thermal spray equipment will find use in other processing tools such as atomization, spray forming, rapid prototyping, and welding. Page 6 Conclusions Another technical challenge that needs to be met before substantial improvements can be made to coating reliability is the development of better coating and substrate quality tests. Standard test methods of coating performance such as density, hardness, wear, adhesion, roughness, thermal conductivity, etc. have been developed but most are not well accepted and for most products each company has their own specialized test procedures that they rely on for process quality control. Development of on-line process control sensors that measure coating and substrate properties in real-time will likely lag behind the development and acceptance of off-line standard test methods. A short list of some of the more important test methods and process control sensors existing or needed that were mentioned follows: #### Coating quality standard test methods needs - 1) metallographic specimen preparation methods - 2) measurement of crystal phase content - 3) substrate surface preparation and surface roughness measurements - 4) coating performance or quality measurements (roughness, density, thermal properties, adhesion, etc.) #### Reliable, inexpensive rugged sensor needs - 1) particle temperature, velocity (trajectory) - 2) substrate roughness - 3) coating properties (density, thermal properties, etc.) - 4) anode wear monitor As techniques for measuring coating and substrate properties are improved the ultimate process potentials will be better known. These measurements will also provide information concerning what sensor and control technologies are needed to realize the higher quality coatings. Further work is needed to assure potential users that the sensors provide valid measurements and that the control systems can use this sensor information to produce reliable, predictable, and repeatable thermal spray coatings. However, even if higher
quality coatings are possible, thermal sprayers are unlikely to be interested in new sensor/control systems that will produce these better coatings until their customers start demanding higher quality. Workshop Attendance Page 7 #### ATTENDANCE LIST #### **Industry** Vladimir Belashchenko TAFA Inc. 146 Pembroke Rd. Concord, NH 03301 603-223-2188 603-225-4342 (fax) vlad@tafa.com Jacques Blain TECNAR Automation Ltée 3502 First Street St. Hubert (Quebec) Canada J3Y 8Y5 450-443-5335 450-443-4880 (fax) jblain@tecnar-automation.com Rick Burmeister Measurement & Control Technologies 810 Greenleaf Ave. Charlotte, NC 28202 704-334-5878 704-334-1539 (fax) rburmeister@compuserve.com J. J. (Sean) Conway **Crucible Compaction Metals** 1001 Robb Hill Road Oakdale, PA 15071 toll free-888-923-2670 412-923-2670 412-788-4240 (fax) conway@cruciblecompaction.com James E. Craig Stratonics, Inc. 23151 Verdugo Drive, Suite 114 Laguna Hills, CA 92653-1340 949-461-7060 949-461-7069 (fax) info@stratonics.com Daryl Crawmer Praxair Thermal Spray Systems N 670 Communication Drive Appleton, WI 54915 920-997-6167 920-734-2160 (fax) dcrawme@appl.psti.praxair.com Brian A. Hann **Crucible Compaction Metals** 1001 Robb Hill Road Oakdale, PA 15071 toll free-888-923-2670 412-923-2670 412-788-4240 (fax) hann@cruciblecompaction.com Y. C. Lau GE CRD 1 Research Circle Niskayuna, NY 12309 518-387-6017 518-387-7495 (fax) Lau@crd.ge.com David Y. Lee Stratonics, Inc. 23151 Verdugo Drive, Suite 114 Laguna Hills, CA 92653-1340 949-461-7060 949-461-7069 (fax) Timothy McKechnie Plasma Processes 4914 D Moores Mill Rd. Huntsville, AL 35811 258-851-7653 258-859-4134 (fax) Tim.McK@plasmapros.com Stephen A. Osella ICT, Inc. 6309 John Chisum Ln. Austin, TX 78749-1839 512-301-2444 intcomtec@aol.com Page 8 Workshop Attendance Tsung-Yu Pan Ford Research Laboratory 20000 Rotunda Drive MD 3135, SRL, P.O. Box 2053 Dearborn, MI 48121-2053 313-322-6845 313-323-1129 (fax) tpan@ford.com Ron Parker Stratonics, Inc. P.O. Box 206 Geneseo, NY 14454 716-346-2447 parker_ron@compuserve.com Jack Ramsey Trans-Tech 5520 Adamstown Road Adamstown, MD 21710 301-874-6453 301-695-7065 (fax) P.O. Box 69 jramsey@alphaind.com Jim Ruud GE Corporate R&D K-1 MB165 1 Research Circle Niskayuna, NY 12309 518-387-7052 518-387-5576 rwd@crd.ge.com Gregory Wuest Sulzer Metco Westbury, NY 516-338-2217 516-338-2488 (fax) gregory.wuest@sulzer.ch Workshop Attendance Page 9 #### Academia Christopher C. Berndt SUNY at Stony Brook 306 Old Engineering Stony Brook, NY 11794-2275 516-6328507 516-632-8525 (fax) cberndt@notes.cc.sunysb.edu Maher Boulos Universite de Sherbrooke Centre de Recherche en Technologie des Plasmas Faculte des Sciences Appliquees Sherbrooke (Quebec) Canada J1K 2R1 819-821-7168 819-821-7955 (fax) Donna Hale INEEL/Univ. Of Idaho P.O. Box 1625 MS 3765 Idaho Falls, ID 83415-3765 208-526-1744 208-526-0425 (fax) lh5@inel.gov Joachim Heberlein Univ. Of Minnesota Dept. Of Mechanical Engineering 111 Church St. S.E. Minneapolis, MN 55455 612-625-4538 612-624-1398 (fax) jvrh@me.umn.edu William H. Hofmeister Vanderbilt Univ. Dept. Of Chemical Engineering P.O. Box 1604 Nashville, TN 37235 615-322-7053 615-343-0466 (fax) hof@vuse.vanderbilt.edu Page 10 Workshop Attendance #### **National Labs (non NIST)** James R. Fincke **INEEL** Lockheed Martin Idaho Technologies Co. P.O. Box 1625 MS 2211 Idaho Falls, ID 83415-2211 208-526-2031 208-526-5327 (fax) jfl@inel.gov Kendall J. Hollis Los Alamos National Laboratory MS G770 Los Alamos, NM 87545 505-665-8223 505-667-5268 (fax) hollis@mst.lanl.gov Leslie Kohler **NSWC** 9500 MacArthur Blvd. West Bethesda, MD 20817 Code 612 301-227-5096 301-227-5548 (fax) KohlerLK@nswccd.navy.mil Luc Leblanc National Research Council Canada 75 De Mortagne Boucherville (Quebec) Canada J4B 6Y4 450-641-5232 450-641-5106 (fax) luc.leblanc@nrc.ca Christian Moreau National Research Council Canada 75 De Mortagne Boucherville (Quebec) Canada J4B 6Y4 450-641-5228 450-641-5106 (fax) christian.moreau@nrc.ca John E. Smugeresky Sandia National Laboratories MS 9403; Dept. 8712 Livermore, CA 94551-0969 925-294-2910 925-294-3410 (fax) smug@sandia.gov Workshop Attendance Page 11 #### **NIST** Mail Address for NIST employees: Name NAT'L INST STDS & TECH 100 BUREAU DR STOP xxxx GAITHERSBURG, MD 20899-xxxx Frank S. Biancaniello STOP 8556 301-975-6175 301-869-5629 (fax) frank.biancaniello@nist.gov William J. Boettinger STOP 8555 301-975-6160 301-975-4553 (fax) william.boettinger@nist.gov David W. Bonnell STOP 8522 301-975-5755 301-975-5334 (fax) Bonnell@nist.gov Paul A. Boyer STOP 8556 301-975-6970 301-869-5629 (fax) paul.boyer@nist.gov Sam R. Coriell STOP 8555 301-975-6169 301-975-4553 (fax) sam.coriell@nist.gov Stanley J. Dapkunas STOP 8520 301-975-6130 301-990-8729 (fax) stanley.dapkunas@nist.gov Albert Davydov STOP 8555 301-975-4916 301-975-4553 (fax) albert.davydov@nist.gov Carol A. Handwerker STOP 8550 301-975-6158 301-975-4553 (fax) carol.handwerker@nist.gov John W. Hastie STOP 8522 301-975-5754 301-975-5334 (fax) john.hastie@nist.gov Rodney D. Jiggetts STOP 8555 301-975-5122 301-869-5629 (fax) rodney.jiggetts@nist.gov Aaron Johnson STOP 8361 301-975-5954 301-258-9201 (fax) aaron.johnson@nist.gov John R. Manning STOP 8555 301-975-6157 301-975-4553 (fax) manning@nist.gov Robert L. Parke STOP 8556 301-975-6174 301-869-5629 (fax) robert.parke@nist.gov Albert J. Paul STOP 8522 301-975-6004 301-975-5334 (fax) albert.paul@nist.gov Page 12 Workshop Attendance Patrick Pei STOP 8520 301-975-3681 301-990-8729 (fax) patrick.pei@nist.gov Cary Presser STOP 8360 301-975-2612 301-869-5924 (fax) cary.presser@nist.gov Richard E. Ricker STOP 8553 301-975-6023 301-975-4553 (fax) richard.ricker@nist.gov Stephen D. Ridder STOP 8556 301-975-6175 301-869-5629 (fax) stephen.ridder@nist.gov Robert J. Schaefer STOP 8555 301-975-5961 301-975-4553 (fax) robert.schaefer@nist.gov Jay S. Wallace STOP 8520 301-975-5984 301-990-8729 (fax) jay.wallace@nist.gov #### PRESENTATION SLIDES #### NIST Ceramic Coatings Program S. J. Dapkunas (NIST) #### NIST CERAMICS COATINGS PROGRAM S. J. Dapkunas **Ceramics Division Materials Science and Engineering Laboratory National Institute of Standards and Technology** Thermal Spray Workshop on Sensors, Modeling and **Control Strategies** > November 19, 1998 Gaithersburg, MD #### PROGRAM OBJECTIVE To develop measurement, characterization and modeling methods which support improvement of process control and property/performance prediction #### PROGRAM STRATEGY - Current Emphasis - Thermal Barrier Coatings - Plasma Spray Deposition - Future Emphasis - Wear and Erosion Resistant Coatings - Additional Processing Types - Functionally Graded Materials - Utilize NIST analytical capability with academic and industrial processing capability. - Cooperatively set goals with partners, focus on specific issue. - Focus NIST research efforts on the same materials/samples to intensify effect. - Transfer results through direct collaboration. - Implement measurement methods through codified standards, SRMs, data, models. Page 14 Workshop Slides #### NIST Ceramic Coatings Program (cont.) #### S. J. Dapkunas (NIST) #### **COLLABORATIONS** - Powder Producers - Equipment Manufacturers - OEMs - Instrument Manufacturers - Oak Ridge National Laboratory - Sandia National Laboratory - SUNY/Stony Brook - Mechanical Engineering Laboratory/Tskuba - National Aerospace Laboratory/Kakuda - BAM, Berlin - DLR, Cologne - IPP, Prague #### NIST Ceramic Coatings Program (cont.) #### S. J. Dapkunas (NIST) #### PROGRAM STRUCTURE #### **Processing** Develop characterization and measurement methods for feedstock powder and relate to deposition behavior and microstructural features #### **Coating Characterization** Develop methods to examine microstructure and properties of coatings to provide input to property model development and relate to processing parameters #### Modeling Develop microstructural models to describe microstructural effects on properties/performance #### SRM 1982- Zirconia Thermal Spray Powder-Particle Size Distribution #### METHODS INCLUDED IN CERTIFICATION Certified Values- SEM Reference Values- Laser Light Scattering Sieving Additional Information- Chemistry, Specific Gravity, Tap Density, Hall Apparent Density, Hall Flow Rate, Specific Surface Area #### PARTICIPATING ORGANIZATIONS Leeds & Northrup, Alloys International, Hoeganaes, Sulzer Metco, Zircoa, Stellite Coatings, Metallurgical Technologies, Pratt & Whitney, Praxair Surface Technologies, Horiba Instruments, Coulter Scientific Instruments, Amherst Process Instruments, Caterpillar, H. C. Starck #### PSD OF ZIRCONIA BY DIFFERENT LABORATORIES USING DIFFERENT MODELS OF MICROTRAC Page 16 Workshop Slides #### NIST Ceramic Coatings Program (cont.) #### S. J. Dapkunas (NIST) #### SRM 1984- WC/Co Thermal Spray Powder Particle Size Distribution - SRM 1984 I Sintered and Crushed, 1 to 40 um - SRM 1984 II- Aglomerated and Sintered, 10 to 50 um - Round Robin Participants - Powder Manufacturers- METCO, METECH, H. C. Starck, Osram/Sylvania - Coaters- TAFA, Stellite, Spray Tech - Instrument Manufacturers- Leeds and Northrup, Horiba, Coulter - Other-Sandia, Japan Thermal Spray Society #### NIST Ceramic Coatings Program (cont.) #### S. J. Dapkunas (NIST) #### COATINGS CHARACTERIZATION #### Thermal properties of coatings - Guarded hot plate adapted to measurement of coating thermal conductivity. - Correlation with laser flash method in progress. - Standard Reference Material for thermal conductivity to be Page 18 Workshop Slides #### NIST Ceramic Coatings Program (cont.) #### S. J. Dapkunas (NIST) #### **COATINGS CHARACTERIZATION** #### **Instrumented Indentation Measurements** - Development of technique for measurement of elastic modulus - Micro-indentation for thick TBCs Variation of E through thickness determined Data used in microstructural modeling - Nano-indentation for thin coatings BAM collaboration VAMAS Round Robin Praxair - ATP Workshop on Indentaion
Measurements and Standards planned to identify issues and approaches. #### NIST Ceramic Coatings Program (cont.) #### S. J. Dapkunas (NIST) #### MODELING - Object Oriented finite Element (OOF) model developed to provide guidance on role of thermal sprayed microstructure on properties. - Predicted E compared with measured E (Instrumented indentation). - Models available on WWW http://www.ctcms.nist.gov/~wcraig/oof.html - PPMZOOF Tool to take an image to an element based representation with constitutive properties specified by a user. - OOF Tool to perform physical tests and obtain microstructural behavior. Physics Based Finite Element TBC model - SBIR/Optimal Corp. #### Design of the Ceramics Coatings Database The database is divided into four components: #### 1. Bibliography Because the information is more or less uniform from one source to the next, a fixed field structure is useful and effective. Separate fields are used for authors' names, title of journal or book, title of paper, volume, issue, page numbers, year, publisher, editor #### 2. Material Identification Because processing methods and the kinds and extent of information reported vary greatly from one paper to the next, material identification is provided using a small set of fixed field variables to record generic classification information (such as chemical class is oxide, chemical family is Al-O, formula is Al₂O₃, informal name is alumina, etc.) plus a text field in which the description of the processing method can be entered as fully as information is available. #### 3. Measurement Methods Because measurement methods and the procedures followed can vary greatly from one paper to the next and the procedures can be adapted *ad infinitum* for special purposes, measurement methods are described using only one fixed field variable (to record the generic name of the test method) and one text field in which the description of the measurement method can be entered as fully as information is available. #### 4. Property Tables Property data are contained in tables with a configuration that is partially predefined. Each table consists of five columns. The names and unit of the property column (such as Hardness in GPa) are preassigned. The names and units of the remaining four columns are defined (if used) at the time of data entry. (This design has been found to be sufficiently flexible to accommodate nearly all of the studies encountered in the development of the databases for bulk structural ceramics and for high temperature superconductors.) The layout of a typical data table might look like: | | Mass Fraction
of Y ₂ O ₃ | Indentation
Load | Hardness | |--|---|---------------------|----------| | | % | N | GPa | | | | | | | | | | | Page 20 Workshop Slides #### NIST Ceramic Coatings Program (cont.) #### S. J. Dapkunas (NIST) #### Variables and Properties for a Ceramic Coatings Property Database The tables on the following pages contain lists of variables and properties that were used, reported, or discussed in a sampling of the literature on ceramic coatings. The sampling consisted of 57 papers drawn from 23 journals. | Journals | # of Papers | |-----------------------------|-------------| | ACerS Bul. | 1 | | Adv. Matl. Proc. | 1 | | Colloque de Phys | 1 | | J.Alloy.Comps. | 1 | | J.Am.Cer.Soc. | 3 | | J.Cer.Soc.Jpn. | 1 | | J.Chem.Soc.Jpn. | 1 | | J.de Phys. | 1 | | J.Engr.Gas Turb.Powr. | 2 | | J.Eur.Cer.Soc. | 1 | | J.Mat.Sci. | 2 | | J.Mat.Sci.Let. | 2 | | J.Sol.St.Chem. | 3 | | J.Th.Spray Tech. | 11 | | J.Thermophys. Ht.Trans. | 1 | | J.Tribol. | 1 | | Mat. Char. | 1 | | Mat.Sci.Engr. A | 3 | | Nuc.Instru.Meth.Phys.Res. B | 1 | | Plasma Chem.Plas.Proc. | 1 | | STLE Trib.Trans. | 1 | | Surf.Coat.Tech. | 16 | | Surf.Interface Analysis | 1 | Variables and Properties for a Ceramic Coatings Property Database, R. G. Munro, NIST, 7/30/98, Page 1 of 4 #### **Processing Variables** | Variable | Туре | |--------------------------|---------| | Process name | text | | Carrier gas | text | | Carrier gas flow rate | numeric | | Cooling rate | numeric | | Deposition efficiency | numeric | | Deposition method | text | | Flow rate | numeric | | Fuel gas | text | | Fuel gas flow rate | numeric | | Nozzle diameter | numeric | | Nozzle length | numeric | | Oxyfuel ratio | numeric | | Particle flow pattern | image | | Particle velocity | numeric | | Plasma gas | text | | Plasma gas flow rate | numeric | | Plasma gas pressure | numeric | | Plasma spray power level | numeric | | Powder feed rate | numeric | | Variable | Type | |--|---| | Powder injection point | numeric | | Powder wheel speed | numeric | | Primary gas | text | | Primary gas flow rate | numeric | | Primary gas mass flow rate | numeric | | Raw material feed rate | numeric | | Relative surface travel rate | numeric | | Reynolds number | numeric | | Rotation speed | numeric | | Secondary gas | text | | | | | Secondary gas mass flow rate | numeric | | Secondary gas mass flow rate
Spray standoff distance | numeric
numeric | | , , | | | Spray standoff distance | numeric | | Spray standoff distance Spray impingement angle | numeric
numeric | | Spray standoff distance Spray impingement angle Spray gun input power | numeric
numeric
numeric | | Spray standoff distance Spray impingement angle Spray gun input power Substrate temperature | numeric
numeric
numeric
numeric | | Spray standoff distance Spray impingement angle Spray gun input power Substrate temperature Torch rotation speed | numeric
numeric
numeric
numeric
numeric | Variables and Properties for a Ceramic Coatings Property Database, R. G. Munro, NIST, 7/30/98, Page 2 of 4 #### NIST Ceramic Coatings Program (cont.) #### S. J. Dapkunas (NIST) #### Powder Variables | Variable | Туре | |----------------------------|---------| | Name | text | | Density | numeric | | Hall flow rate | numeric | | Melting point | numeric | | Particle size | numeric | | Particle size aspect ratio | numeric | | Particle distribution | numeric | | Particle shape | text | | Thermal conductivity | numeric | | Thermal expansion (CTE) | numeric | #### Specimen Variables | Variable | Туре | |----------------------|---------| | Binder | text | | Binder, Amount of | numeric | | Bond coat | text | | Bond coat, Amount of | numeric | | Element | text | | Element, Amount of | numeric | | Phase | text | | Phase, Amount of | numeric | | Substrate | text | | Top coat | text | | Top coat, Amount of | numeric | #### Test Variables | Variable | Туре | |---------------------------------|---------| | Test name | text | | Corrodent spicies | text | | Environment | text | | Heating rate | numeric | | Load | numeric | | Loading rate | numeric | | Lubricant | text | | Number of cycles | numeric | | Penetration depth (of indenter) | numeric | | Sliding speed | numeric | | Temperature (of coating) | numeric | | Temperature (of substrate) | numeric | Variables and Properties for a Ceramic Coatings Property Database, R. G. Munro, NIST, 7/30/98, Page 3 of 4 #### Properties | Property | Type | |------------------------------------|---------| | Absorption band | numeric | | Absorption coefficient | numeric | | Coating thickness | numeric | | Corrosion rate | numeric | | Creep rate | numeric | | Creep stress exponent | numeric | | Density | numeric | | Elastic (Young's) modulus | numeric | | Electrical resistance | numeric | | Erosion resistance | numeric | | Fracture toughness | numeric | | Friction coefficient | numeric | | Grain size | numeric | | Grain size, Aspect ratio | numeric | | Grain size, Distribution | numeric | | Hardness | numeric | | Heat transfer coefficient | numeric | | Infrared spectra | numeric | | Interfacial toughness | numeric | | Lattice parameters | numeric | | Lifetime, Coating | numeric | | Lifetime, Fatigue | numeric | | Lifetime, Thermal cycling | numeric | | Lifetime, Thermal fatigue | numeric | | Lifetime, Thermomechanical fatigue | numeric | | Mean free path | numeric | | Melting point | numeric | | Micrograph | image | | Oxidation, Activation energy | numeric | | Oxidation, Products | text | | Oxidation, Rate | numeric | | Oxidation, Resistance | numeric | | Property | Туре | |--------------------------------|---------| | Oxidation, Scale thickness | numeric | | Oxidation, Weight gain | numeric | | Poisson's ratio | numeric | | Pore size | numeric | | Porosity | numeric | | Refractive index | numeric | | Scratch adhesion critical load | numeric | | Sound velocity | numeric | | Spalling onset time | numeric | | Specific heat | numeric | | Spectral refectivity | numeric | | Strength, Adhesion | numeric | | Strength, Bond | numeric | | Strength, Cohesion | numeric | | Strength, Compressive | numeric | | Strength, Creep | numeric | | Strength, Flexural | numeric | | Strength, Shear | numeric | | Strength, Tensile | numeric | | Strength, Tensile bond | numeric | | Stress relaxation exponent | numeric | | Surface roughness | numeric | | Texture coefficient | numeric | | Thermal conductance | numeric | | Thermal conductivity | numeric | | Thermal diffusivity | numeric | | Thermal expansion | numeric | | Thermal shock resistance | numeric | | Wear coefficient | numeric | | Wear rate | numeric | | Weibull modulus | numeric | | XPS spectra | numeric | $Variables\ and\ Properties\ for\ a\ Ceramic\ Coatings\ Property\ Database,\ R.\ G.\ Munro,\ NIST,\ 7/30/98,\ Page\ 4\ of\ 4$ Page 22 Workshop Slides **Process Diagnostics** S. D. Ridder (NIST) ## **Process Diagnostics** S. D. Ridder and F. S. Biancaniello Thermal Spray Coatings Workshop National Institute of Standards and Technology Gaithersburg, MD 20899 November 19, 1998 Past work at NIST in spray processing was focused on metal powder production via gas atomization. Several imaging
techniques were developed to provide information to help understand the disruption process and to provide data for process models. Many of these techniques are suitable for use in diagnostics of thermal spray systems. # Diagnostic and Control Sensors for Spray Systems - Fraunhofer diffraction size of particles/droplets in flight rapid response (>2 Hz) control sensor - Schlieren/Shadow photography diagnostics of gas and plasma jets non-intrusive used to validate fluid flow models - Double pulse xenon flash illuminated video 30 fps double exposure DIV (Digital Image Velocimetry) of particles/droplets size and shape of particles/droplets in flight potential for control sensor - 4. High-speed video (50-100 ns exposure time) -30 fps multiple exposure -will be optimized for harsh plasma spray environment - 10,000 fps cinema 20-30 ns exposure high intensity diffuse illumination surface details of particles/droplets particle entrainment in the plasma jet trajectory of particles/droplets in flight particle/droplet impact with substrate - Holography (3D image of particles/droplets in flight) hologram provides infinite depth of field multiple exposures (20 ns pulse duration) DIV of particles/droplets Page 24 Workshop Slides #### Process Diagnostics (cont.) #### S. D. Ridder (NIST) 10,000 fps cinema is used to capture dynamic flow phenomena. ## 10,000 fps Cinema diagnostics of dynamic particulate plumes that preserves sequencial events (temporal resolution=100 µs) images can be formed from thermal incandescence or by triggered laser light pulses dynamic breakup events and high speed particles can be "frozen" with short, 20 ns, laser pulses highly luminous spray processes are imaged with coherent light through narrow band filters This slide shows a three frame sequence from a 10,000 fps movie imaged with the incandescent light of the atomization plume. These movies show several interesting phenomena associated with the liquid delivery and disruption in a close-coupled gas atomizer. The liquid is drawn into the gas flow from a recirculating "base flow" region in the vicinity of the metal pour tube tip. The pour tube tip is at the top of each frame but does not show in these images. The liquid metal is seen to recirculate with little gas mixing in the upper half of each frame. It then rapidly accelerates (blurs) and moves away as it mixes with the gas flow in the bottom half of each image. #### Process Diagnostics (cont.) #### S. D. Ridder (NIST) The NIST holocamera can produce holograms of highly dynamic phenomena such as gas atomization or thermal spray. Each hologram can be recorded with from one to several (two or three) separate 20 ns laser exposures. Multiple exposures can provide velocity and time resolved disruption data. Droplets or particles as small as 20 µm can be resolved and each hologram has "infinite" depth-of-field. This is a common characteristic of holographic images. The hologram itself is a record of the light phase information present in the object beam over the time of exposure. # Holography of droplets and particles coherent optical technique for recording high resolution images of dynamic 3-D particulate plumes resolution of 10 µm possible throughout spatial volumes of several cubic centimeters dynamic breakup events and high speed particles are "frozen" with short, 20 ns, laser pulses highly luminous spray processes are viewed with coherent light through narrow band filters In the NIST holocamera setup the atomization plume passes through the object beam between the "snorkel" tube viewports. The holograms are analyzed by placing them back in an optical setup that duplicates the reference beam configuration used during exposure. A reconstructed image is formed in space that faithfully represents the light phase information present during exposure. Standard photography equipment can be used to view the reconstructed image focusing anywhere within the three-dimensional space defined by the object beam and the two "snorkel" tube viewports. Page 26 Workshop Slides #### Process Diagnostics (cont.) #### S. D. Ridder (NIST) This slide shows a typical two-dimensional image taken from a double exposure hologram of the plume of a gas atomizer (SiGMA). In this hologram the object beam was directed to pass through the plume downstream from the region shown previously in the 3 frame high-speed movie sequence. Two 20 ns laser pulses were used with 3 µs delay between each exposure. On either side of the central low magnification image are several higher magnification views from selected regions. These double exposure holograms reveal both the motion of stable spherical droplets, and disruption dynamics in larger unstable liquid metal shapes. # Need for Diagnostics, Sensors and Modeling in Thermal Spray Rational for NIST program aimed at developing sensors and control systems for thermal spray. Thermal spray coatings have not been sufficiently reproducible to satisfy most industrial requirements - improved process design and processing control needed - automated "intelligent" processing needed - need improved reliability in coatings so that industry does not need to inspect <u>every</u> part before installation (inspection is very costly) Diagnostics, sensors, and modeling will lead to: - development of process simulators to test effect of varying process conditions. Use computer simulations rather than expensive production tests. - automated feedback and control to provide reproducibility and reliability in thermal spray coatings ## Process Diagnostics (cont.) S. D. Ridder (NIST) #### **Industry Needs to be fulfilled:** - a) Several US industry representatives: (GE, GM, Ford, Caterpillar / Solar Turbine, Miller Thermal / Praxair) have expressed the need to implement automated control and design improvements in commercial spray systems, primarily aimed at moving from the current practice based on "operator art" to an "Intelligent Processing" control technique using advanced sensors - b) This project is aimed at addressing the diagnostic, sensing, modeling, and control issues as applied to Thermal Spray Processing in general and Plasma Spray Coatings in particular - c) Specific measurement needs to be addressed include: in-flight measurements of particle size, speed, and temperature spray deposit temperature, thickness, texture, and porosity as functions of processing conditions - d) DOD/DOE are de-emphasizing non-military technology transfer, thus making NIST involvement in the development of these technologies more important Schematic showing plasma spray process and where NIST research will focus. Page 28 Workshop Slides #### Process Diagnostics (cont.) #### S. D. Ridder (NIST) This slide, of thermal spray particles in flight, is an example of one of the imaging systems being developed at NIST for spray processing diagnostics. This image was made using a new high speed video camera with a peltier cooled CCD. Developed in response to a NIST funded SBIR solicitation, this camera can superimpose up to 10 images per frame with exposures as short as 50 ns. Framing rates are determined by CPU and data bus speed. 30 fps are possible using a 300 MHz CPU with a 100 MHz data bus. Some of the spray guns available in the NIST Thermal Spray Facility. Spectroscopy Measurements (Summary) #### **Spectroscopy of Thermal Spray Plumes** P.K. Schenck, *D.W. Bonnell*, J.W. Hastie, (presented at the *Thermal Spray Coatings Workshop*, NIST, 11/19/1998) **Background:** NIST is in the latter stages of an SBIR development program (Stratonics) aimed at implementing two-color pyrometry of particulates in thermal spray plasmas. High speed CCD camera technology is being used to both time- and spatially-resolve the particulates and to derive their temperature. However, the effect of discrete spectral emissions on the measurements needs to be established. Also, an independent method of temperature measurement is desirable to validate the pyrometric approach. Both of these needs can be accomplished through simultaneous detailed spectroscopic measurements on plasma spray plumes. A tandem spectroscopic—pyrometric study was initiated jointly with the Metallurgical Processing Group (MPG) and Stratonics, using the MPG's research spray facility at NIST. The spectroscopic approach and preliminary results are outlined here. This collaboration utilizes expertise in spectroscopy, high temperature processes, and temperature measurement, and the availability of a highly portable fiber-optic-coupled visible/near-IR spectrometer. Of particular interest was the question of contributions to the emission from the arc, including possible interferences from constituent line spectra, both from plasma gases and vaporized material. **Experimental:** The spectrometer used was an integrated Ocean Optics* mini-crossed Czerny-Turner spectrometer/CCD detector system (see figure below), with a fixed range of approximately 380-926 nm and approximately 1 nm resolution. The spectrometer's fiber-optic coupling had a fixed 25 μm slit assembly (1000 μm high) to assure that the fiber position from one setup to the next did not affect the system calibration. For this work, spectra were taken at 50, 20 and 10 kHz digitizer rates, averaging 4 scans, for effective collection times of 81, 204, or 409 ms. End points are normally discarded before data processing as not being fully illuminated by the grating, to give a final range of 384-895 nm. The optical fiber used was supplied by the Metallurgical Processing Group, and was a polymer-clad single-strand quartz fiber 1.0 mm effective diameter with standard SMA couplings at each end. This fiber showed a single flaw (evidenced by light leakage through the sheath), but the output image of a distributed light source showed no obvious patterning that might be indicative of a seriously damaged fiber. The fiber was approximately 7-1/2 m long and was installed in the experimental facility through a long pipe, allowing the spectrometer and data
system to be located outside the spray area. Most of the fiber length was shielded from stray light. Initial survey spectra (see Bare Fiber figures, below) were taken at two positions using just the fiber tip as a collector, indicating that plasma light was a serious background contaminant, and that careful shielding and a collimating optical element was needed. The collection optic prepared consisted of a 12.7 mm f/l quartz lens mounted in a housing specially constructed to allow the fiber to be adjusted at the rear focal point. A blackened lenshood extending approximately 3.5 cm beyond the face of the lens (l/d ~3) was added to further reduce off-axis light. The fiber was fine-adjusted to the focal point by projecting light through the fiber and moving the fiber to produce the most uniformly illuminated projected spot. This spot had a diameter of 2.5 cm at a distance of 25 cm, the nominal working distance. This corresponds to an acceptance angle (full-cone angle) of less than 6 degrees (~0.1 rad). Off-axis light acceptance appeared to be minimal. Our optical system was aimed at the pyrometer input lens using projected light (see Schematic of experimental layout, below) At the lens of the pyrometer, the projected light circle from the fiber's optical system was completely within the pyrometer's front lens element. Still, we found that including a simple lenshood on the pyrometer as a scattered light trap significantly reduced background light. A set of measurements were taken under actual spray conditions, with particles of nearly monosized Inconel 625., beginning 30 cm downstream ("Far"), and at 5 cm intervals moving upstream to the 15 cm location ("Near"). The vertical location of the particulate stream was adjusted based on the pyrometric image, and did not necessarily peak the spectrometer signal. Integration intervals chosen to give maximum signals of at least ½ full scale. Neither blank nor particulate free spectra were taken except after the final 15 cm data collection for this series. Analysis with, and without blank subtraction at this point indicated were nearly identical, indicating that the background plasma interference had been effectively eliminated. The plasma operating parameters (gas flow/composition) were altered slightly toward the end of this set because of low supply gas pressure. ^{*}Mention of specific companies or products is solely for identification. NIST makes no claim that these companies or products are particularly more appropriate for the applications mentioned than other similar items. Page 30 Workshop Slides Spectrometer wavelength calibration was accomplished by taking a spectrum of a standard Hg calibration lamp, and deriving a polynomial correction expression that corrected all observed line centroid channel (pixel) positions to the known line positions. Wavelength error after calibration was negligible with respect to the wavelength span of individual pixels. Spectrometer sensitivity calibration was accomplished by taking a spectrum of a calibrated standard radiance source (Optronics Labs, Inc. - a broad-filament incandescent source) with the entire spectrometer assembly, including the fiber optic and lens assembly attached just as used for experiments, aimed at the lamp. It was necessary to use an aperture to restrict the field of view to just the calibration point on the lamp. Calibration without the restriction aperture affected final temperatures determined by approximately 8 K (resulting in lower derived T's). This difference is probably the largest calibration error effect. The standard lamp was supplied with a series of absolute radiance calibration points at selected wavelengths. These data were fitted piecewise with Planck functions to interpolate to the exact wavelengths for each channel (pixel) of the spectrometer. Each point of the observed calibration spectrum was then divided into the resulting calibration table to obtain a new set of factors that could then be used to correct each observed spectrum, pixel by pixel, for the complete system sensitivity. To process each data spectrum, dark subtractions were done before sensitivity corrections. It should be noted that, while Ar lines were still discernable in the particulate-bearing plumes at 15 cm, the contributions were relatively small, and became much smaller at longer distances. We consider this good evidence that stray light is controlled, but additional tests are needed to verify that conclusion. When the particle-free plume spectra were subtracted, all line-spectral features essentially vanished, except perhaps slight distortions at the locations of the lines. For some of the data, it was not practical to take comparable particle-free spectra. Those data sets were treated without that correction, and the effect was minimal. After background subtractions and sensitivity corrections were made, the resulting spectra were fitted to a Planck function with amplitude and temperature as the fitting variables. $$I(\lambda,T) = \frac{A}{\lambda^5 \left(\exp^{c_2/\lambda T} - 1 \right)}$$ where A and T were non-linear fitting parameters; A was a scale factor that included factors in viewing and particle geometry and T was the derived blackbody/graybody temperature. λ are the measured wavelengths and $c_2 = 1.438786E7$ [nm·K] is the second radiation constant. Results and Discussion: The included figure shows final corrected $Ivs\lambda$ data for the last measurement position in the spray (at ~15 cm downstream), where all experimental setup corrections were finalized and there was an opportunity to obtain a particle-free background spectrum. The best-fit Planck-law curve gives a derived temperature of 2557 ± 2 K, where the statistical uncertainty is the standard deviation of the parameter. The curve data appear to arise from a very good blackbody, with only minor deviations between 850 and 900 nm, which have no significant effect on the result. We implicitly assume that particle emissivity is essentially independent of wavelength (the "gray-body" assumption). Since the fit includes an amplitude parameter, only the wavelength dependence of the emissivity is not accounted for. We did notice that, using an initial sensitivity calibration series from our standard radiance lam, no Planck curve fit all the data. That initial calibration was taken without an aperture to restrict FOV, and thus included light from filament locations at significantly different temperatures from the calibration point. We thus note that the fitting process does not yield this good a fit over the entire span of the thermal spray data unless the data are Planckian (i.e., represent a region with a defined average T). We feel that we have resolved most of the data analysis issues, and that there are only small systematic errors remaining in the data analysis. Clearly, It is more difficult to assess the accuracy with the data currently available and with the uncertainties inherent in making ensemble-average measurements of an inherently dynamic process. We were able to analyze other data sets by assuming that blanks were similar, and ignoring the particle-free background subtraction. For the replicate point at 15 cm, the resulting derived temperature was 2549 ± 3 K (after recalibration), indicating that the statistical and replicate uncertainties are comparable. An earlier data set, from a separate start/run of the torch (but at the same conditions) before the final scattered light changes were made to the experimental setup yielded a value of 2536 ± 2 K. Thus, the replicate error could be of the order of 20-25 K. We examined fitting subsets of the data, with the expected result that the uncertainty in derived T was greater. The single-data-set fit figure below also includes equivalent Planck curves, matched to the data at the average corrected intensity, with values of T 100 K more and less than the fitted value. It is clear that differences in T of that magnitude would result in very different curve shapes than we observed. Thus, our true sensitivity is much better than ± 100 K. The replicate error value of 25 K noted above seems to be a reasonably conservative estimate of our run-to-run uncertainty. Other sources of error include the possibility that the particles are not good gray bodies (*i.e.*, the emissivity variation with wavelength, $\epsilon(\lambda) \neq \text{constant}$), or that different-sized particles have different effective emissivities. We reanalyzed the data, assuming 1 percent and 5 percent linear variations in emissivity over the span of the spectra. These different assumptions resulted in changing the derived temperatures by about 5 K and 22/24 K, respectively. Decreasing $\epsilon(\lambda)$ increases T, and vice versa. This order of variation is certainly not unrealistic. When we applied a reference $\epsilon(\lambda)$ curve for W as a model to our data, the derived T decreased by 90 K. Thus, $\epsilon(\lambda)$ uncertainties could be a significant source of error, even for two-color-type pyrometry or for our multispectral determinations. Another possible source of experimental error for the spectroscopic measurements is the acceptance angle of the current optical train. We are clearly sampling over the entire width of the particulate stream at all distances, and physical differences in the plume at different distances could affect the averaging process. In particular, the absolute total intensities were greater at greater distance, indicating that the wider plume at longer distances was still within the field of view. Less likely is the possibility that we are still accepting significant amounts of stray light, or that reflected light from the plasma is a major contributor. Other possible sources of error include the possibility that particles are obscured by vaporizing material or that there are dynamic changes in average T on the timescale of our data collection. Our observation of Cr emission in
the wide area early scans clearly indicates that some metal vapor is present and excited by the plasma. Simple calculations of vaporization rate indicate that the vapor pressure of Cr can be more than one bar, and that several percent of the Cr could be vaporized during the particle flight time. All these errors, it should be noted can affect the individual particle pyrometry, as well. It should be noted that the averaging process of the spectrometric data tends to be essentially exponentially weighted toward the higher temperature contributors. Thus, differential cooling processes (*i.e.*, cooling of some particles by entrained air or radiant emission, as opposed to others remaining shielded by hot gas) might not be well averaged without a more restricted view of the plume. There is clearly sufficient emission to allow additional restriction of the field of view. Analysis of the points taken from 30 cm to 15 cm as discussed above all fall within ± 11 K, and are thus only statistically different from the other measurements. The slight upwards trend shown in the Temperature vs Position figure may easily be due as much to changes in experimental conditions (perhaps due to the increased visual area presented by the downstream plume with respect to its spatial extent upstream, or to the likelihood that hotter particles will move further, changing the temperature distribution of the plume, etc.) as to actual trends in the plume. As noted, there are several possible physicochemical effects (including the possibility of reaction heating of plume particles by atmospheric oxygen, changes in size and emitting surface due to vaporization, vaporization obscuring the upstream particle emission more than downstream, axial particle energy distribution effects, and others still to be considered) that could explain such a trend, but we do not currently consider our replicate precision to be sufficient to assert that the apparent data trend is significant. Comparison of our data with the results of the particle-imaging pyrometer were treated in Stratonics' presentation. In comparing measurements, it needs to be recognized that there is likely a <u>distribution</u> of temperatures among the particles at any point in the plume stream. The integration time of our spectrometer is sufficiently long, and the current field of view sufficiently broad, that we are averaging over an ensemble of the particles passing our sampling region. That we see what amounts to a well equilibrated blackbody simply means that all the major emission sources in view have a blackbody-like visible emission profile (i.e., Planckian) and the sum over all particles is again Planckian. Thus, to compare the two types of measurements, the pyrometric analysis needs to assess the effective distribution of particles (both number and by area), and apply a suitable averaging function. It would be desirable to use the temperature and size distribution data from the imaging pyrometer to generate a simulated DC or average brightness of the spray for comparison with our data. **Conclusions:** We have demonstrated a spectroscopic technique to obtain a high-quality ensemble average temperature of the particulate stream in a plasma spray apparatus. We still need to consider questions regarding the radial temperature distribution, and the "best" way to arrange the spectrometry apparatus to provide a comparable viewpoint to that of the particle-imaging pyrometer. It would also be useful to extend our wavelength range to more closely match that of the pyrometric filters in use, in order to identify just where emission interferences may become important in the pyrometer's band pass regions. Other effects, such as particle size, size distribution, and plasma emission interferences at closer points in the spray plume still need to be investigated. Page 32 Workshop Slides Spectroscopy Measurements (Vuegraphs) D. W. Bonnell (NIST) # **Multichannel Spectroscopy of plume/particles** ## Purpose: - thermal vs non-thermal emission - interferences for purpose-built pyrometer - Planck Law temperature probe test of "temperature" - insight into transport hot or what? # Approach: - commercial broad multispectral spectrometer - silica fiber-optic coupled - control of imaging area only moderate time/space resolution - Blank & particle-free backgrounds subtracted - calibrate relative spectrometer response, correct spectra - fit Planck fn, ~375—900 nm ### **Problems:** - Temperature/energy distribution in plume - Light acceptance - Scattered light control from particles (Pls), walls, apparatus - Plume axis vs Pl axis and torch axis - Pl visual density optically thick or semitransparent? - 2-color pyrometry *vs* 1000+-color spectrometry - Pl-by-Pl imaging vs "ensemble averaging" - Strong surface curvature of small Pls - Gas effects! - torch gas(es) - vaporized from Pls obscuration? - turbulence, segregation, expansion cooling... - Sensitivity, resolution of T - What do we mean by "temperature" Spectroscopy Measurements (Viewgraphs, cont.) ### D. W. Bonnell (NIST) Schematic of fiber-coupled spectrometer - Courtesy OceanOptics, Inc. $Schematic\ of\ experimental\ layout\ for\ simultaneous\ measurements\ with\ ThermaViz @\ imaging\ pyrometer\ and\ fiber\ optic-coupled\ spectrometer.$ Page 34 Workshop Slides Spectroscopy Measurements (Vuegraphs, cont.) D. W. Bonnell (NIST) Spectra taken with bare fiber probe, ~5 cm downstream, ~5 cm FOV. The discrete line cluster at ~440 nm, and at ~530 nm are from Cr; the lines above ~700 nm are Ar plasma lines. Note that almost none of the plasma light comes from the powder (difference spectrum). Spectra taken with bare fiber probe, ~15 cm downstream, ~5 cm FOV. The lines above ~700 nm are, as before, Ar plasma lines, and are essentially all plasma light. ### Spectroscopy Measurements (Vuegraphs cont.) ### D. W. Bonnell (NIST) Uncorrected (for sensitivity) emission spectra with F/1 lens, and lens-hood assembly; FOV ~ 2.5 cm. The material sprayed was 446 Ferritic SS powder, - 63 +23 micron size. A sequence of spectra, as above, at various distances downstream. Note that the actual raw intensities are comparable, and have been offset here for visibility. Page 36 Workshop Slides ### Spectroscopy Measurements (Vuegraphs cont.) ### D. W. Bonnell (NIST) Spectrum as above, after intensity correction against standard radiance source- the vertical axis is relative to the standard. The red curve is a fitted Planck function, for the temperature shown. The two dashed curves represent Planck curves for temperatures 100 K higher, and lower. Estimated error from all sources is <50 K, excluding non-gray body emissivity effects. Resulting Temperature *vs* position downstream in torch spray. The trend is not considered significant. The constant temperature behavior probably reflects a combination of reaction heating and particle surface oxidation. Spectroscopy Measurements (Vuegraphs cont.) D. W. Bonnell (NIST) # **Conclusions/Summary** # Downstream dominated by Pl thermal radiation - but still some line emission - various absorption mechanisms seem small - Planck radiation behavior looks really good - Apparent agreement between image and spectroscopy - far field interferences either small, or similar at both scales - depends on averaging methods - other problems noted can be made small - T nearly constant in far field (25-50 cm downstream) - T is quite high - Vapor pressure question - Measurement/analysis problems grow near the torch - Calibration effects can be serious error sources - Similar questions for measurement geometry?! - Both spectroscopy and imaging have robust advantages - Simple pyrometry likely to have serious problems - What data do transport models need? - reactive effects - vaporization - composition changes? - T distributions Page 38 Workshop Slides ### Thermal Imaging ### J. E. Craig (Stratonics) An imaging pyrometer was developed to measure surface temperature of hot metal objects and particle temperature, velocity and size in thermal spray, spray-forming and atomization processes. Two-wavelength imaging provides true, high-resolution temperature measurement, even with emissivity variation caused by roughness or oxidation. The system, having a field of view that spans the entire particle stream in thermal spray devices, provides continuous measurement of the entire particle stream. The software locates particle streaks in acquired thermal images, determines the intensity ratio and dimensions of each streak, and calculates the particle temperature, velocity and size. Measurements in the NIST thermal spray facility are described. A Two-Wavelength Imaging Pyrometer for Measuring Particle Temperature, Velocity and Size in Thermal Spray Processes J.E. Craig, R.A. Parker, D.Y. Lee Stratonics, Incorporated > Thermal Spray Coatings Workshop NIST, Gaithersburg, MD November 18, 1998 A broad range of material processes require a temperature imaging solution that provides accuracy on objects whose temperature or emissivity varies across the surface. Temperature imaging provides measurements at thousands of points, as opposed to the single spatially averaged result from spot pyrometers. Although infrared imaging cameras provide spatial resolution, they utilize a single waveband and form a temperature image from the intensity image by assuming a single value for the emissivity in the entire scene. This proves problematic when the emissivity varies across the object. Also, infrared imaging cameras are only available at high cost, thereby limiting their widespread application to industrial use. # Introduction - Two-wavelength imaging pyrometer for metal processing applications is developed - > Imaging pyrometer applied to hot metal objects - > Application to furnace using borescope technology - > Particle temperature monitoring for thermal spray Page 40 Workshop Slides ### Thermal Imaging (cont.) ### J. E. Craig (Stratonics) Recently, multiple wavelengths have been
incorporated into instruments in an effort to deal with the variation in emissivity of the object. The issue of emissivity variation is particularly problematic for high temperature materials processes. A common theme to all this work is that each sensor was developed to monitor a particular process, albeit, steel, semiconductor wafers or pulverized coal combustion. While Meriaudeau, (Meriaudeau, 1996) described an imaging device for monitoring steel, which used only a single wavelength; it was concluded that a two-wavelength approach would be much more robust against effects of emissivity variation. For some materials, such as silicon wafers, this problem is overwhelming without using many wavelengths (Kaplinsky, 1998). The key design feature in the imaging pyrometers used for this study is a filter pairing of the brightness of the long and short wavelength at each point on the heated surface or particle. Surface temperatures are imaged with a standard charge coupled device (CCD) video camera while particle streak imaging is achieved by incorporating a special short-exposure CCD camera (Morris, Karmali, 1997). This special camera features a high-resolution (640 by 480 pixels) array which is cooled and read out with 12 bit dynamic range. Another unique imaging feature of this camera is its electronic shutter. This feature provides from 1 to 10 exposures per video frame with each exposure duration adjustable from 50 ns to 1.0 ms. The frame rate for each video camera is 30 Hz. Single exposures of (1 to 10) us are typically used to obtain particle streak images with appropriate lengths. The streak length, adjusted with the exposure duration, is set in the range of 10 to 30 pixels. The signal to noise ratio of the streak intensity and the velocity resolution is improved by forming longer streaks. However, care was required in setting the streak length to avoid overlapping streaks and to insure that each streak begins and ends within the FOV. # **Temperature Monitoring is Critical to Process Control** Thermal Imaging Sensor for Intelligent Control of High-Temperature Materials Processing Temperature monitoring is a key factor in quality and uniformity # Why Two-Wavelength Imaging Measurements - Provides <u>true</u>, high-resolution temperature measurement - Insensitive to emissivity variation across surface - ➤ High-resolution temperature images result from two-wavelength design - Precision optical design provides matched magnification, differential focus and registration to sub pixel resolution* - * Patent Pending # Specifications Imaging Pyrometers Surface Particle Temperature Range 600-2300°C (3-10°C) Resolution Standard: 300 H x 480 V Across FOV, 20µm Optional: 500 or 1000 lines w/cooled chip & 12 or 16 bit A/D Electronic Shutter Speed: 7 exposure times from 16 ms to 130 µs Temperature Range 1200-2700°C (60°C) Velocity: 10-900 m/s, (5%) Size: 30-300 µm (30µm/pixel) Field of View: 1/2 inch format: 6.4 x 18.6mm 2/3 inch format: 8.8 x 25.8mm Electronic Shutter: 0.1 µs to 10 ms ### Thermal Imaging (cont.) ### J. E. Craig (Stratonics) A demonstration of the SIP was performed in the Material Processing lab at the University of California at Santa Barbara. A round steel disk with an internal heating element and thermocouple was used as the thermal source of known temperature. The pyrometer was designed for maximum accuracy in the relatively low temperature range of 1200 K to 1400 K. Therefore, filters were selected in the longer wavelength region of the camera response. A video lens was selected having a FOV of 50 mm by 100 mm at a distance of 500 mm. The image acquired with the steel block at its highest temperature is Two-Wavelength Image Temperature Map **SURFACE Imaging Pyrometer System** - >System provides simultaneous, high-resolution images of short and long wavelengths - ➤ Software analyzes the brightness ratio to measure true-temperatures of surfaces with varying emissivity - shown. The left image is from the short wavelength filter and the right image is from the long wavelength filter. A wire was placed on the steel block surface to provide a focusing aid for the surface pyrometer. In another sequence of images, recorded as a movie, the temperature of the steel block was slowly raised by 3 K. The temperature measurement of the SIP, relative to the thermocouple measurement, is in excellent agreement throughout the movie. The best linear fit to the data shows that the temperature varied 3.3 K degrees, while the thermocouple measurement indicates slightly less than 3 K, again indicating the good agreement between the imaging pyrometer and the thermocouple measurements. However, there is local fluctuation of a few degrees in the SIP measurement and an absolute difference of 4 K. The PIP was installed in the NIST Thermal Spray Facility to measure particle temperature, velocity, and size. The two-wavelength imagery captures particle streaks in fast exposures, shown by the long and short wavelength images (right and left respectively) of nickel-based superalloy particles within the spray plume of a DC plasma torch using a mixture of argon and helium gases. Several particle streaks are observed in the image, which spans a FOV, 5 mm by 15 mm. A single particle streak image has been magnified. Particle measurements are currently performed in a post-processing step. Since the FOV spans the particle stream, the particle measurements can be averaged into several spatial regions spanning the particle stream. Thus, every image provides up-dates to particle temperature, velocity, and size profiles across the stream. Page 42 Workshop Slides ### Thermal Imaging (cont.) ### J. E. Craig (Stratonics) The pyrometer was configured with a filter pair with pass-bands centered at 800 nm and 900 nm and the short-exposure CCD camera fitted with a front lens having a demagnification of 1/3. The pyrometer was then focused on the tungsten filament lamp described in the previous section. The intensity was measured in the long and short wavelength regions for filament current values between 12 A and 40 A. The intensity ratios (long over short wavelength) were determined and associated with the known temperatures of the tungsten filament. A single constant is used in the calibration of the pyrometer to achieve the best fit with the known filament temperature. The constant is determined using radiometric model of the pyrometer response to gray-body radiation. The uncertainty of the measured temperature was below 8 K over this range of calibration. The radiometric model derived calibration constant incorporates three important components of the two-wavelength, imaging pyrometer response function: the two band-pass filter transmission characteristics, the relative spectral response of the CCD camera and the spectral curves for a Planck radiator. The deviation of the calibration constant from its ideal value of unity, which is typically ±10 %, is a measurement of the validity and accuracy of the radiometric model. # Pyrometer Calibration, 1000-2500 K - Tungsten filament lamp used for higher temperature range (1000 - 2500K) - A gray-body source used for low temperature range - ➤ Standard deviation, 7.66 K # Heat Treating Application of Surface Pyrometer - Cooled borescope is used as interface to furnace - > Pyrometer optics compatible - Temperature images achieved Temperature Map ### Thermal Imaging (cont.) ### J. E. Craig (Stratonics) # Thermal Spray Application of Particle Pyrometer at NIST - > DC plasma torch, argon/helium gases - Nickel-based super alloy particles B99- Movies with 135 frames were recorded in 4 seconds with the pyrometer focused at three points along the particle stream, 15 cm, 20 cm and 25 cm. The number of particle streaks were measured across the particle stream. About 800 to 1000 particles were included in each number profile. The FOV was adjusted at each distance to re-center on the particle stream, which drops a few millimeters between 15 cm and 25 cm. The relative vertical position of the three FOV's were not recorded, but were of the order of a few millimeters. The profiles indicate that the particle stream was spreading with distance. The particle count histogram at the 15 cm position indicated that the peak occurred at the 150 pixel column position (3.75 mm at 25 μ m/pixel). The center of the FOV was at 300 pixels, or 7.5 mm. # **Particle Measurements** - Short-exposure (5μs) particle streak images - Measures temperature, velocity and size Page 44 Workshop Slides ### Thermal Imaging (cont.) ### J. E. Craig (Stratonics) The velocity histogram was constructed for data recorded at all three locations. Most of the velocity measurements fall between 75 m/s and 125 m/s. The mean velocity drops from 100 m/s to 90 m/s as position changes from 15 cm to 25 cm. # **Particle Velocity Histogram** Average velocity drops from 100 to 90 m/s The velocity profile is shown in this slide for the data at all three locations. Again, it is clear that the mean velocity drops about 10 m/s as position changes from the 15 cm to the 25 cm locations. The highest velocity particles are on the top of the particle stream (high column number) but there are very few of these events. # **Particle Velocity Profile** ### Thermal Imaging (cont.) ### J. E. Craig (Stratonics) Most temperature measurements fall between 2000 K and 3000 K. # Particle Temperature Histogram Average temperature drops from 2675 to 2520K The temperature profiles at all three locations are nearly constant across the entire FOV. # **Particle Temperature Profile** Page 46 Workshop Slides ### Thermal Imaging (cont.) ### J. E. Craig (Stratonics) Conclusions: A surface imaging pyrometer (SIP) and a particle imaging pyrometer (PIP) have been developed to measure either the surface temperature of hot metal objects or to measure particle temperature, velocity and size in thermal spray, spray-forming and atomization processes, PIP. The resolution of the temperature image is 300 by
480 pixels across the FOV, which can range from a few millimeters in a highly magnified configuration to a full meter in a de-magnified configuration. The pyrometer output is standard video signal with a frame rate of 30 Hz. The pyrometer has been calibrated across a wide range of temperature, i.e. from (873 to 2700) K, to an uncertainty of 8 K. The major feature of the technology is the simultaneous imaging at two-wavelengths and the resulting ability to ### **Conclusions** - Innovative two-wavelength imaging pyrometer measures surface and particle temperature with high resolution and accuracy - Surface temperature accuracy varies from 3-8K over 200 K range and 2000K range respectively - Particle temperature measurements accurate to 60K - > Sensor is designed for integration into process control systems by virtue of its powerful software capabilities measure true-surface temperature of high temperature objects with variable emissivity. The variation can occur across the surface of the object, or it can occur in time, for example as an object reaches a temperature, where oxidation begins. The feature is also important for process environments, in which the surface is being coated or formed, by droplets or powder. In that case, the result is a randomly rough texture or one with a significant variation in emissivity. The sensor is designed for adaptation and integration into process control systems by virtue of its software system. This technology has the potential to provide a significant improvement in modern, thermal process control systems. The SIP instrument with analysis software has been developed to measure true surface temperature distributions with high resolution and accuracy for materials that are graybody radiators, i.e. a body whose emissivity is constant with wavelength. For materials that deviate from graybody behavior, an apparent ratio temperature will be inferred. The error will depend upon how much the emissivity varies with wavelength in the range between the short and long wavelengths. Future research has been proposed to study and model the error in the apparent ratio temperature inferred from the ratio of spectral radiances for target materials having unequal emissivities at the two wavelengths, thus permitting more accurate measurement on a broader range of materials. The technology shows considerable potential to monitor process uniformity, improve quality and reduce cost in advanced high-temperature, materials processing. The PIP has a FOV that spans the entire particle stream in typical, thermal spray devices, and provides continuous measurement of the entire particle stream. Software was developed to determine temperature, velocity and size of each particle from the intensity ratios and dimensions of the particle streaks. Measurements of plasma-sprayed nickel-based particles have been obtained over a range of distances from the plasma torch showing the decay of temperature and velocity and the spreading of the particle stream associated with increasing distance from the torch. The particle temperature measurements were confirmed with a second measurement with a spectrometer. The comparisons between the two temperature measurements showed agreement to within 60 K. The particle velocity measurements will be validated in a future effort. ### References - M. Kaplinsky, et al, "Recent Advances in the Development of a Multi-wavelength Imaging Pyrometer", *Opt. Eng.*, 36(11) Nov. (1998), p. 3176-3187. - F. Meriaudeau, et al, "Temperature Imaging and Image Processing in the Steel Industry", *Opt. Eng.*, 35(12), (1996), p. 3470-3481. - J. Morris and M. Karmali, "CCD Camera Helps Analyze Print Head Problems", *Photonics*, Aug. 1997. Numerical Simulation of Underexpanded Jets A. Johnson (NIST) NIST # Numerical Simulation of Underexpanded Jets Aaron Johnson and Pedro I. Espina Thermal Spray Coatings Workshop National Institute of Standards and Technology Gaithersburg, MD 20899 November 19, 1998 Page 48 Workshop Slides Numerical Simulation of Underexpanded Jets (cont.) A. Johnson (NIST) Numerical Simulation of Underexpanded Jets (cont.) A. Johnson (NIST) # NST **Numerical Method Compressible Navier-Stokes Solver (NPARC 2.1)** - Descendant of the NASA ARC2D and ARC3D codes - Beam and Warming Approximate factorization algorithm - 2nd order central-differencing - Equations formulated in strong conservation form for a curvilinear system - Diagonalized implicit matrices - Euler backward time differencing - Implicit 2nd and 4th order Jameson-style artificial dissipation **Grid Adaptation Program (SAGE)** - Parabolic formulation Page 50 Workshop Slides Numerical Simulation of Underexpanded Jets (cont.) A. Johnson (NIST) Numerical Simulation of Underexpanded Jets (cont.) A. Johnson (NIST) # **Conclusions** ### 1. Results have shown these Pressure Ratio effects. - Numerical results in good agreement with schlieren images. - Aspiration behavior appears to be correlated with the structure of the separation region. - Low pressure ratios, or long LDT, lead to flow separation increasing the chances of freeze-off. - Atomizers should be easier to operate at high pressure ratios. ### 2. Limitations of Research - The numerical method can not be used to make quantitative predictions of the aspiration pressure nor of flow separation. - Predictions of the aspiration and separation need validation. - Liquid is expected to have an influence on the structure of the gas flow. - Future work should study the effects of particle loading on the structure of the gas flow. Page 52 Workshop Slides Process Control S. A. Osella (ICT) ICT MEL # **Process Control** Stephen A. Osella, Ph.D. Intelligent Computing Technologies, Inc. intcomtec@aol.com 512-301-2444 November 19, 1998 # ICT Process Control Basics **MEL** - Modern process control systems are very complex involving: - many instruments measuring pressure, temperature, flow, level, etc. - control elements such as valves, pumps, heaters, etc. - Output control is either: - Manual: operator effects control - Automatic : hardware or software machine - Control elements are either: - On-Off: ex. Valve - Continuous: ex. Motor RPM Page 54 Workshop Slides Process Control (cont.) S. A. Osella (ICT) # ICT Control System Conceptual View MEL The controller transforms the inputs into outputs using the control function and internal state. # ICT # **Simplifying Principles** **MEL** - Decompose control function - Base decomposition on specific task, subsystem, or control element - Keep what is independent separate - Use global variables to synchronize activity - Use state machines - Specify individual control functions using statetables Process Control (cont.) S. A. Osella (ICT) # Control System Objects MEL Controller Hierarchy Controller Group Controller State Table Parameter: Input, Output, Internal State Table State Table State-Variable State-Variable Event Parameter Reference Page 56 Workshop Slides Process Control (cont.) S. A. Osella (ICT) Process Control (cont.) S. A. Osella (ICT) # ICT Control System Workbench MEL - Each state-variable is defined by a number of events - Each event is a logical expression - Event expressions are evaluated in order until one is TRUE - If none is TRUE, the "None Of The Above" event is triggered - A State is a combination of state-variable events (State Table row) # ICT Control System Workbench MEL - Controller Verification - Controller logic is "syntactically" verified - Semantic verification is planned • - Automatic Code Generation - C-language code - LabVIEW Code Interface Node resource Page 58 Workshop Slides Process Control (cont.) S. A. Osella (ICT) Sensors and Controls for Thermal Spray: Is there a need? C. C. Berndt (SUNY Stony Brook) # Sensors and Controls for Thermal Spray: Is there a need? Christopher C. Berndt SUNY at Stony Brook cberndt@notes.cc.sunysb.edu * NIST presentation 1998 C. C.Berndt # The Thermal Spray Market in 1990 | | Annual Sales (\$M) | | | |---|--------------------|-------|--| | | US | World | | | Coating applicators & Job Shops | 410 | 900 | | | OEMs | 160 | 280 | | | Military | 45 | 60 | | | Other | 15 | 20 | | | Total | 630 | 1260 | | | Suppliers of equipment, systems & materials | 275 | 430 | | Is this an accurate measurement of the TS Market? Page 60 Workshop Slides Sensors and Controls for Thermal Spray: Is there a need? (cont.) C. C. Berndt (SUNY Stony Brook) # The Commercial Future of Thermal Spray (November, 1998) | | 1997 | | 2002 | | AAGR | |---------|------|-------|------|-------|-------------| | Туре | \$M | % | \$M | % | % | | Thermal | 380 | 53.5 | 510 | 51.7 | 6.1 | | Spray | | | | | | | CVD | 151 | 21.3 | 218 | 22.1 | 7.6 | | PVD | 141 | 19.8 | 186 | 18.8 | 5.7 | | Other | 38 | 5.4 | 73 | 7.4 | 14.0 | | Total | 710 | 100.0 | 987 | 100.0 | 6.8 | - Source: Business Communications, Norwalk, CT - AAGR = Average annual growth rate. Other = dipping, spraying, sol-gel, laser-assisted. STONY BROWK Sensors and Controls for Thermal Spray: Is there a need? (cont.) C. C. Berndt (SUNY Stony Brook) **Questions & Comments** Thermal spray is being commingled with the other techniques; e.g., sol-gel, laser. - "High technology" is creeping into thermal spray. What will people be willing to pay for it? - The more important question (which has not been addressed) is "How many guns / systems are there in the marketplace?", 500 or 5,000 units? - Does control improve the economics of thermal spray industry? C. C.Berndt STON 5 # Is there Money in "Control/ Sensors"? Total \$'s = \$M510 | Percent \$'s on \$M Percent \$'s on \$M | Total % | |---|---------| | | | | Equipment Equipment | | | 10 51 10 5.1 | 1 | | 10 51 20 10.2 | 2 | | 10 51 30 15.3 | 3 | | | | | 20 102 10 10.2 | 2 | | 20 102 20 20.4 | 4 | | 20 102 30 30.6 | 6 | | | | | 30 153 10 15.3 | 3 | | 30 153 20 30.6 | 6 | | 30 153 30
45.9 | 9 | Page 62 Workshop Slides Sensors and Controls for Thermal Spray: Is there a need? (cont.) C. C. Berndt (SUNY Stony Brook) **Processes and Markets** | Year | Plasma | Arc
Wire | Combustion
Wire | Combustion
Flame | HVOF | |------|--------|-------------|--------------------|---------------------|------| | 1960 | 15 | 15 | 35 | 35 | | | 1980 | 56 | 6 | 11 | 28 | | | 2000 | 48 | 15 | 4 | 8 | 25 | "High tech / advanced" methods are taking a larger market share. C. C.Berndt Control Tools Currently Available - There are some general commercial control systems that are available and that have been proven for thermal spray. - In-Flight Particle Pyrometer. - Tecnar DP2000 for measuring temperature. - Control Vision. - Who is using these tools other than research Institutions? C. C.Berndt 8 BR STONY BROWK STATE INIVERSITY OF NEW YORK Sensors and Controls for Thermal Spray: Is there a need? (cont.) C. C. Berndt (SUNY Stony Brook) Other Control Tools in the Research Phase. - Acoustic Emission to measure torch performance & erosion; hence implying life and microstructure. - Laser thickness gages. - Laser non-destructive methods. C. C. Berndt # **Practicality?** - Who will pay for control tools / sensors? - Is tool development a terminal SBIR activity? - Are such tools robust? - What will these devices enable? - Higher productivity? - Better microstructures? - Processes that would not be available otherwise? - Does the work force need an advanced degree to use such equipment? C. C.Berndt 10 Page 64 Workshop Slides Sensors and Controls for Thermal Spray: Is there a need? (cont.) C. C. Berndt (SUNY Stony Brook) Sensors / Controls that are Important Impact properties (temperature, velocity, size). - Residual stress / strain, Elastic modulus. - Real time thickness. - Deposition efficiency. - Surface roughness. - A "direct microstructure" sensor. E.g., porosity The vital factor is to have these available in a user-friendly and economical mode. C. C.Berndt STONY BROOK 11 **12** # **Conclusions** Remember the question: "Sensors and Controls for Thermal Spray: Is there a need?" and "Will such devices be accepted by the thermal spray constituency? The answer is "YES!" Sensors for Controlling Thermal Spray Processes C. Moreau (NRC-CNRC) # NRC - CNRC # Sensors for Controlling Thermal Spray Processes Christian Moreau and Luc Leblanc Industrial Materials Institute Thermal Spray Workshop, NIST, Gaithersburg, MD 18 November 1998 # Canada # **Outline** - Introduction - Sensing Techniques (Processes and Materials) - zone 1: Heat Generation - zone 2: Particle Heating and Acceleration - zone 3: Coating Built-up - Control Strategies - Conclusions NRC - CNRC Page 66 Workshop Slides Sensors for Controlling Thermal Spray Processes (cont.) C. Moreau (NRC-CNRC) # **Aerial View of IMI** NRC - CNRC # **IMI Mission** Promote the growth and competitiveness of Canadian industry, through research and development activities related to *materials* processing technologies NRC - CNRC Sensors for Controlling Thermal Spray Processes (cont.) C. Moreau (NRC-CNRC) #### **IMI - Overview** Created 1978 Moved to Boucherville 1983 Staff 150 of which: Scientific/Eng 75 Technical 50 Budget 17M\$ NRC · CNRC #### **Core Competencies** #### **Materials Behavior** - Development and improvement of processes optimizing microstructure to obtain higher performance materials - Development and experimental validation of process modeling software - Development and use of optical and ultrasonic sensors for process and quality control Page 68 Workshop Slides Sensors for Controlling Thermal Spray Processes (cont.) C. Moreau (NRC-CNRC) # **Process Instrumentation - Expertise** Nondestructive characterization Optical inspection Ultrasonic techniques NRC · CNRC #### **Optimum Process Control** - The key physical process variables and key characteristics of the coating for the application it is dedicated to must be identified and controlled. - Elements required to control the process: - the optimum value of these process and coating key variables must be known - the sensors to monitor these characteristics must be available - the controller must be able to modify the input spray variables to compensate for any deviations identified Sensors for Controlling Thermal Spray Processes (cont.) C. Moreau (NRC-CNRC) #### **Practical Requirements** In establishing a control strategy, one must take into account: - costs of the sensors and controllers - ruggedness of the sensors - ease to use - operator training (technical skills) Page 70 Workshop Slides Sensors for Controlling Thermal Spray Processes (cont.) C. Moreau (NRC-CNRC) # Sensing Techniques Zone 1: Heat Generation Present state-of-the-art technology based on the monitoring and control of input variables in Zone 1: | Spray
Processes | Main input variables | |--------------------|-------------------------| | DC plasma | arc current | | | arc gas flow rates | | HVOF/ | fuel flow rate | | flame | oxygen or air flow rate | Input energy or net plasma energy NRC · CNRC Sensors for Controlling Thermal Spray Processes (cont.) C. Moreau (NRC-CNRC) #### Voltage Fluctuations Time Evolution of the Root Mean Square Increase of the voltage fluctuation rms value during the first 20 hours of spraying. A plateau was reached for the remainder of the wear experiment. NRC - CNRC #### **Voltage Signature Evolution** - Three distinct frequency regions are identified in the voltage signatures. - During fifty hours of spraying, regions located around 8.3 kHz and 12.3 kHz did not evolve significantly. - However, region located around 5.0 kHz shifted significantly. Page 72 Workshop Slides Sensors for Controlling Thermal Spray Processes (cont.) C. Moreau (NRC-CNRC) # Monitoring of Fluctuations in Plasma Spraying - Signals correlated to the arc root movement: - voltage fluctuations - acoustic emission - high speed imaging - plasma light intensity fluctuations - Advantages (specially voltage signatures): - easy to implement - low cost - Disadvantages: - how to react? NRC - CNRC # Sensing Techniques Zone 1: Heat Generation - Techniques for monitoring the temperature, velocity and composition of the hot gas jets: - emission spectroscopy - coherent anti-Stockes spectroscopy (CARS) - Rayleigh spectroscopy - enthalpy probe - oxygen sensors - Difficult to use in a production environment Sensors for Controlling Thermal Spray Processes (cont.) C. Moreau (NRC-CNRC) ## **Zone 2: Particle Heating and Acceleration** - The structure and properties of the sprayed coatings depend directly on the temperature and velocity of the particles before impact - Various techniques were developed for particle diagnosis in laboratory: - Two-color pyrometry - laser Doppler anemometry (phase) - laser Two-focus - streak camera - Concerns: - complexity, fragility, high technical skill and safety NRC - CNRC # Particle Diagnosis Techniques: Simplified Approaches - Use of the thermal radiation emitted by the hot particles - Linear camera for monitoring the orientation, width and intensity of the particle jet - Commercial systems for monitoring the particle temperature and velocity Page 74 Workshop Slides Sensors for Controlling Thermal Spray Processes (cont.) C. Moreau (NRC-CNRC) # On-line Particle Monitoring During Thermal Spraying DPV2000 Tecnar Automation Litee Sensors for Controlling Thermal Spray Processes (cont.) C. Moreau (NRC-CNRC) # Particle Diagnosis System DPV2000 On-line Monitoring: Particles: Temperature Velocity Diameter Particle Jet: Intensity Orientation Width NAC - CNAC Page 76 Workshop Slides Sensors for Controlling Thermal Spray Processes (cont.) C. Moreau (NRC-CNRC) # Evolution of Coating Microstructures After 3 h After 37 h New spray parameters Power 30 kW 28.5 kW 35 kW Deposition efficiency: 55% 41% 53% Coatings sprayed after 3 hours and with new spray parameters are very similar (microstructures, deposition efficiencies). NRC · CNRC Sensors for Controlling Thermal Spray Processes (cont.) C. Moreau (NRC-CNRC) #### Zone 3: Coating Build-up - Monitoring of the substrate and coating temperature during spraying - Characterization of the substrate preparation - Coating characteristics and NDT NRC - CNRC # Substrate and Coating Temperature - Influence on: - the interface quality between lamellae - residual stresses - crack formation - thermal conductivity - elastic modulus, etc. - Measuring techniques: - one- or two-color pyrometry - infrared camera Page 78 Workshop Slides Sensors for Controlling Thermal Spray Processes (cont.) C. Moreau (NRC-CNRC) # Coating Characteristics and Nondestructive Testing - Various techniques (with and without contact): - high resolution camera - triangulation - eddy current - thermal wave - laser-ultrasonics - Properties to measure: - thickness - elastic moduli - thermal conductivity - porosity - defects NRC - CNRC #### Laser Ultrasonic Principle CO₂ laser generating 120 ns duration pulses No coupling medium Detection using a Nd:YAG laser (50 µs pulse duration) Sensors for Controlling Thermal Spray Processes (cont.) C. Moreau (NRC-CNRC) Page 80 Workshop Slides Sensors for Controlling Thermal Spray Processes (cont.) C. Moreau (NRC-CNRC) #### Feedback Strategy - Complex task because the process involves many parameters influencing the coating properties - Monitoring spray parameters is important but having a means to react to correct any detected drift is better Sensors for Controlling Thermal Spray Processes (cont.) C. Moreau (NRC-CNRC) #### **Conclusion** - The objective of developing advanced controls is to produce coatings having the same properties day after day or whose properties are within a range of values acceptable for a specific application - To reach this goal, one needs: - reliable spray equipment - consistent feed materials - adapted sensing and nondestructive evaluation techniques - efficient controllers Page 82 Workshop Slides Sensors for Controlling Thermal Spray Processes (cont.) C. Moreau (NRC-CNRC) ####
Conclusion - Controlling key physical parameters during spraying should make it possible the transport of the spraying parameters from one booth to another (booth equivalency) - A good understanding of the physical and metallurgical processes involved in thermal spraying is mandatory to implement adequate control strategy #### Measurement of DC Plasma Arc Fluctuations #### J. Heberlein (U. of Minnesota) Three different arc operating modes in a DC plasma torch have been identified through arc voltage measurements, the restrike mode, the takeover mode and the steady mode. These operating modes strongly influence plasma processes such as plasma spraying. The occurrence of the arc operating modes depends on the torch operating parameters, arc current, plasma gas composition and plasma gas flow rate. The end-zone images of the arc inside the anode-nozzle have been captured by a CCD video system with a high shutter speed. The end-zone images suggest that the thickness of the cold gas boundary layer between the arc column and the anode surface is the most important variable influencing the arc mode occurrence and transition. # Effects of The Cold Gas Boundary Layer on Arc Fluctuations Z. Duan , K. Wittmann , J. F. Coudert , J. Heberlein, and P. Fauchais University of Minnesota 111 Church St. SE Minneapolis, MN 55455 USA University of Limoges 123, Avenue Albert-Thomas Limoges 87060 France Thermal Spray Coatings Workshop National Institute of Standards and Technology Gaithersburg, MD 20899 November 19, 1998 From the characteristics of the voltage waveforms, we can define three basic arc operating modes as shown in this slide. The first one is called the "restrike" mode, which is represented with a saw-tooth shape waveform and a large fluctuating amplitude. The second one is the "takeover" mode, which has an approximately sinusoidal or triangle shape waveform with a relative low fluctuating amplitude. With the same torch configuration and arc gas mixtures, the restrike mode is related to a high mean voltage and the takeover mode is related to a low mean voltage. The last basic mode is the "steady" mode, which is identified with a nearly flat profile and mostly a very low mean voltage. Page 84 Workshop Slides #### Measurement of DC Plasma Arc Fluctuations (cont.) #### J. Heberlein (U. of Minnesota) The voltage traces obtained over an extensive space of operating parameters show the arc, in the most cases, not in a perfectly distinct mode but with a mixed characteristic. The mixed characteristics could be a combination of the restrike and the takeover modes or a combination of the takeover and the steady modes, as shown in this slide. In order to present results easily and clearly, the arc instability characteristic is assigned a numerical value (referring to "mode value") in this presentation. The "restrike" mode is equal to 2, the "takeover" equal to 1, and the "steady" equal to 0. While a perfect mode is assigned to an integer, a decimal number between 0 and 2 specifies a mixed voltage fluctuation character, i.e. "mode = 1.2" represents a voltage mode consisting of an 80% takeover characteristic and a 20% restrike characteristic. This slide shows a typical end-zone image, and an intensity profile along the line which crosses the arc column center. We define the edge of the cold gas boundary layer to be located at the point where the intensity is half of the highest intensity inside the nozzle channel. Since the radiative energy has a rapid rise between 3,000 K to 6,000 K for an argon based plasma, the above definition will locate the boundary layer edge at a point where the temperature is about 4,500 K. The thickness of the boundary layer, which is the distance from the edge to the nozzle wall, is then converted from a number of pixels to a physical dimension in mm. Since the arc is in a highly fluctuating state, the thickness of the boundary layer has been measured 10 times for each individual experimental condition to obtain an average value and reduce the error. The position of the anode attachment is also identified from the end-zone image if it is visible. #### Measurement of DC Plasma Arc Fluctuations (cont.) #### J. Heberlein (U. of Minnesota) The next two slides show the arc operating mode varying with the arc current and the gas flow rate for the straight and swirling arc gas injections, respectively. The results are obtained with argon/helium mixtures. The arc operating mode values decrease with increasing arc current, decreasing mass flow rate, and decreasing secondary gas fraction. For the arc gas injection with swirling flow, there is no steady mode (mode = 0) occurring even with a very large current and a low gas mass flow rate. This is due to the tangential component in the swirling flow which increases the heat transfer from the arc leading to a constriction of the arc column, therefore increasing the thickness of the boundary layer. However, the swirl flow can also randomize the anode attachment by introducing a tangential drag force, which will drive the mode value close to 1 from both directions, even with a relative large mean voltage and fluctuation amplitudes. Page 86 Workshop Slides #### Measurement of DC Plasma Arc Fluctuations (cont.) #### J. Heberlein (U. of Minnesota) These explanations can be confirmed by results obtained with the end-zone image observations. This slide shows the thickness of the cold gas boundary layer changing with current and gas flow rate for swirl injection of the arc gas. The boundary layer thickness increases with decreasing current, increasing gas flow rate and increasing secondary gas fraction. Although occurrence and behavior of an electric breakdown depends on many physical and chemical factors in the anode channel, the thickness of the cold gas boundary layer as we define it using an approximate temperature value could be a good indicator for the characteristics of the arc instability. This slide shows two end-zone images obtained for the arc operating in a restrike dominant mode and in a takeover dominant mode, respectively. The arc operating in a restrike dominant mode presents a very clearly defined anode attachment, while the arc in a takeover dominant mode shows a more gradual decline of the radiation intensity with an non-distinguishable anode attachment. This difference in the arc cross-section clearly indicates the effect of the thickness variation of the cold gas boundary layer and the associated changes in the gas properties. A thin boundary layer might produce a diffuse anode attachment rather than a constricted anode attachment. Conclusions Three arc operating modes - "restrike", "takeover" and "steady" have been identified and characterized. Their dependencies on various operating parameters have been presented. The cold gas boundary layer between the arc column and the anode wall is considered to be the most important variable to influence the arc instability modes. The boundary layer thickness has been observed and measured with an end-zone imaging system. The arc operating in the restrike mode has a well-defined anode attachment, while the anode attachment is hardly distinguishable with the takeover and steady modes. The change in operating parameters which results in a decrease in the thickness of the boundary layer will lead to a change of the arc operating from a restrike to a takeover mode, then to a steady mode. However, an increasing fraction of the secondary gas, which usually has a high thermal conductivity, will drag the arc to the restrike mode. The swirl flow component in the arc gas will drive the arc to takeover-like characteristics. **Acknowledgment** This work has been supported in part by NSF through the ERC for Plasma-Aided Manufacturing grant EEC-8721545 and through an international collaboration grant NSF/INT-9415715. #### Enthalpy Probe M. Boulos (U. of Sherbrooke) #### Enthalpy Probe Techniques for Thermal Plasma Diagnostics Maher I. Boulos Plasma Technology Research Centre (CRTP) Université de Sherbrooke (Québec) CANADA J1K 2R1 - Introduction - Basic Concepts - Typical Results with D.C. and Induction Plasmas - Summary and Conclusion Thermal Spray Workshops, NIST, Gaithersburg, MD, Nov.19 1998 #### Introduction: Diagnostics Needs for Plasma Spraying Independant parameters Dependant parameters Plasma gas Cathode (=) **Powder parameters** Plasma fields d_p, σ_p, d_p, T_m, T_v, H_n, H_v, C_p Temperature Velocity Plasma parameters Anode ⊕ Composition Pressure Powder + carrier Composition Particle fields Power Temperature Velocity Powder injection parameters Size Location Flux density Carrier gas flow rate Injection velocity Substrate fields Loading ratio Temperature Substrate parameters Deposit Surface preparation Spraying distance Substrate Angle of impact Temperature Page 88 Workshop Slides Enthalpy Probe (cont.) M. Boulos (U. of Sherbrooke) #### **Basic Concept of Enthalpy Probe Techniques** #### **Basic Concept of Enthalpy Probe Techniques** Incompressible flow: $U_o = \sqrt{\frac{2(P_o - P_\infty)}{\rho_o}}$ Compressible flow: Subsonic $\frac{P_o}{P_\infty} = \left[1 + \frac{(\gamma - 1)}{2}M^2\right]^{\frac{\gamma}{\gamma - 1}}$ Supersonic $\frac{P_o}{P_\infty} = (\frac{\gamma + 1}{2})M^2 \left[\frac{(\gamma + 1)^2 M^2}{4\gamma M^2 2\gamma + 1} \right]$ where $~\gamma=c_{P}/c_{\nu}~$ and M = Mach number $U_{o}=M_{o}\sqrt{\gamma RT_{o}}$ Enthalpy Probe (cont.) M. Boulos (U. of Sherbrooke) #### Basic Concept of Enthalpy Probe Techniques For dry air #### **Basic Concept of Enthalpy Probe Techniques** For Ar/He mixtures Page 90 Workshop Slides Enthalpy Probe (cont.) Enthalpy Probe (cont.) M. Boulos (U. of Sherbrooke) #### Enthalpy Probe Measurements - DC Plasma Jets Radial concentration profile of entrained air obtained from enthalpy probe measurements Fincke et al. (1993) #### Enthalpy Probe Measurements - DC Plasma Jets Comparisons of measured centerline temperatures Vs current: laser scattering enthalpy probe Fincke et
al. (1993) Page 92 Workshop Slides Enthalpy Probe (cont.) M. Boulos (U. of Sherbrooke) #### Enthalpy Probe Measurements - DC Plasma Jets Comparisons of measured centerline velocities Vs current: laser scattering, \top enthalpy probe Fincke et al. (1993) #### Results with the M1.5 Supersonic Induction Plasma Nozzle Pure Argon, P_a = 17.1 kPa, P_b = 36.3 kPa, P_o = 25 kW, z = 25 mm Enthalpy Probe (cont.) M. Boulos (U. of Sherbrooke) #### Results with the M1.5 Supersonic Induction Plasma Nozzle Ar/H₂ (2% H₂), P_a = 17.1 kPa, P_b = 36.3 kPa, P_o = 25 kW, z = 25 mm #### Results with the M3 Supersonic Induction Plasma Nozzle Pure Argon, P_a= 17.2 kPa, P_b= 212 kPa, P_e= 25 kW, z = 17 mm 7000 6000 至5000 ± 2.0 4000 4000 3000 2000 1.5 0.5 0.5 1000 0.0 -10 -10 Radial distance [mm] Radial distance [mm] 2000 (T) 100000 1500 80000 60000 Differential 40000 500 20000 -10 -8 -10 -8 -B Radial distance [mm] Radial distance (mm) Page 94 Workshop Slides Enthalpy Probe (cont.) #### Enthalpy Probe (cont.) Page 96 Workshop Slides Enthalpy Probe (cont.) #### Enthalpy Probe (cont.) M. Boulos (U. of Sherbrooke) #### **Summary and Conclusions** Enthalpy probe technique offers simple means of measurement of the local temperature, velocity and composition of plasma flows under a wide range of conditions Page 98 Workshop Slides Impact and Solidification of Molten Nickel Droplets W. H. Hofmeister (Vanderbilt U.) ### IMPACT AND SOLIDIFICATION OF MOLTEN NICKEL DROPLETS #### William Hofmeister Vanderbilt University Material in this presentation was published in <u>Solidification 1998</u>, (eds. S. Marsh, et al., TMS, Warrendale, PA, 1998), entitled "Observation of Thermal Profiles during Impact and Solidification of Nickel Drops," by W.H. Hofmeister, R.J. Bayuzick, G. Trapaga, D.M. Matson, and M.C. Flemings, pp. 375-387. Acknowledgments are due to NASA Office of Microgravity Sciences, John Lum, Bob Hyers, Pedro Bastias, James Olive, Prasart Juntawongso, and Alex Altgilbers. #### **Experiment Schematic** The top chamber is fitted with an electromagnetic levitation coil, a sample exchange carrousel, and optical pyrometer. The tube was evacuated and then backfilled with 400 torr ultra high purity helium gas. After melting the temperature of the drop in the coil was regulated by a flow of helium gas over the sample. When the desired temperature was achieved, the levitation power was turned off and the sample allowed to free fall approximately 3.5 meters to the bottom of the tube. The catch chamber at the bottom of the tube was fitted with a 10x10x0.3 cm optically flat quartz plate at the impact site. Below the quartz plate a first surface aluminized mirror was positioned to allow viewing of the splat interface through an 8 inch viewport at the end of the catch chamber. The two thermal imaging systems were positioned to simultaneously view the splat interface via a beam splitting cube. A Kodak Ektapro scanning array camera was operated at 64,000 frames per second and the HSDA96 parallel tapped thermal imaging system was operated at 250,000 frames per second. Both systems were fitted with narrow band pass optical filters centered at 900 nm, and calibrated for temperature measurement using a NIST standard tungsten strip lamp. Page 100 Workshop Slides Impact and Solidification of Molten Nickel Droplets (cont.) W. H. Hofmeister (Vanderbilt U.) #### Superheated Ni splat This movie is a temperature corrected, colorized movie of sample 12 which impacted the plate with 175 K superheat. The movie is generated from the Kodak imager. Impact and Solidification of Molten Nickel Droplets (cont.) W. H. Hofmeister (Vanderbilt U.) # Splat at Tm Kodak imager slightly superheated at impact (<50K) Page 102 Workshop Slides Impact and Solidification of Molten Nickel Droplets (cont.) W. H. Hofmeister (Vanderbilt U.) # Time temperature for Tm splat Kodak imager (sample 8) Impact and Solidification of Molten Nickel Droplets (cont.) W. H. Hofmeister (Vanderbilt U.) #### Side view of undercooled splat #### Time temperature from HSDA96 Sample 10 was undercooled close to 100K and solidified on impact with no additional undercooling. Page 104 Workshop Slides Impact and Solidification of Molten Nickel Droplets (cont.) W. H. Hofmeister (Vanderbilt U.) #### Structure of samples 8 and 12 Photos a & c are from sample 8, b & d are from sample 12. #### Droplet spreading Impact and Solidification of Molten Nickel Droplets (cont.) W. H. Hofmeister (Vanderbilt U.) # High Speed Thermal Imaging for LENS Process Development and Control An electronic paper on this subject was published in JOM-e under the title: "Investigation of Solidification in the Laser Engineered Net Shaping (LENSTM) Process" by William Hofmeister, Melissa Wert, John Smugeresky, Joel A. Philliber, Michelle Griffith, and Mark Ensz, July, 1999. http://www.tms.org/pubs/journals/JOM/9907/Hofmeister/Hofmeister-9907.html This work was sponsored by Sandia National Laboratory, a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under contract number DE-ACO4-94AL85000. Page 106 Workshop Slides Impact and Solidification of Molten Nickel Droplets (cont.) W. H. Hofmeister (Vanderbilt U.) # Temperature Profile from Center of Melt Pool (Coarse Powder) - SS316 powder, -100/+325 mesh - Stable pool over all powers - Pool size increases with power - Superheat lower for coarse powder Impact and Solidification of Molten Nickel Droplets (cont.) W. H. Hofmeister (Vanderbilt U.) # Temperature Gradient from Center of Melt Pool (Coarse Powder) - SS316 powder, -100/+325 mesh - 275W cooling rate is two times 410W cooling rate outside the melt pool Page 108 Workshop Slides #### NIST THERMAL SPRAY RESEARCH PROGRAMS **Project Title:** Ceramic Coatings Program (see page 13) Project Title: Sensors and Diagnostics for Thermal Spray Processes **Investigators:** S. D. Ridder and F. S. Biancaniello #### **Objectives:** The primary focus of this project is to develop tools for the measurement and control of process conditions for thermal spray systems. This includes off-line analysis tools (e.g. high-speed cinematography, imaging thermography and holography) and real-time sensors suitable for process control. In addition, mathematical modeling techniques will be used to provide predictive calculations of process variables and product characteristics. Appropriate process sensors and controls will then be incorporated into an expert system driven process controller with generic applicability to a wide range of metal processing equipment and computer platforms. #### **Technical Description:** The focus of the thermal spray project is the development of measurement tools to provide diagnostic and control capabilities for the production of reproducible industrially important spray coatings such as ceramic-based Thermal Barrier Coatings (TBC's) and metallic based diffusion barriers, corrosion protection coatings and wear reducing layers with predictable properties. The intended expert-system-driven or intelligent process controller requires the acquisition of an extensive data base that maps the effects of all the process variables or parameters on the resulting coating characteristics. Process parameters must be measured, identified as either dependent or independent variables and reduced using dimensional analysis. A process model must be determined that provides a mapping of the process parameter space to the resulting coating properties and process efficiency. Finally, a control system is developed incorporating the process model, sensors and actuators that provides the necessary heuristics and response time for achieving the product goal. This will ultimately allow US industry to produce the advanced materials that this process can provide with reliable performance and acceptable cost. In the NIST thermal spray system, independent programmable manipulators are used to move the plasma gun, the substrate and the process sensor. These "robots" provide adequate flexibility for the production and diagnostic monitoring of reproducible coatings on two-dimensional test coupons measuring up to 1 m². High-speed cinematography, schlieren gas flow imaging, multi-exposure laser holography, and high-speed video cameras are currently available and will be further developed to provide diagnostic tools for thermal spray systems (*see page 23*.) A new Near Infra Red (NIR) spectrometer has been purchased and is currently in use to measure the emission spectrum from the DC plasma thermal spray gun (*see page 29*.) CFD modeling capabilities are available to evaluate gas and liquid flow systems. Previous studies of the supersonic flow in gas/metal atomizers have provided new capabilities that enhance the viscous dissipation model within the CFD code (*see page 47*.) This tool could be employed to study fluid flow in thermal spray equipment. NIST Small Business Innovative Research (SBIR) funds were previously used to develop several of the diagnostic and sensor systems that are now being applied to thermal spray research. SBIR funds are currently sponsoring the development of two new sensor technologies for this program. A new Infra-Red (IR) thermal imaging sensor, currently capable of measuring the temperature of rough, variable emissivity surfaces, is now being modified to provide, in addition, on-line measurement of particle temperature and velocity (*see page 39*.) Another SBIR funded project is investigating emissivity and reflectometry sensors. This research is aimed at providing tools to quantify substrate and coating surface qualities. #### **Task Outline:** - A) Test methods: Develop Tools and Procedures for Reproducible Quantitative Analysis - 1) particle size analysis: sonic sieving of thermal spray powder - 2) surface roughness measurements: profilometry and confocal metallography - 3) adhesion testing: 4-point bend testing of coating and substrate - 4) **metallography:** specimen preparation of
thermal spray coatings - B) Diagnostic tools: Develop Tools for Qualitative and Quantitative Measurements of Dynamic Phenomena - 1) schlieren strobe video of thermal spray plumes: evaluate particle flow and plasma energy fluctuations (see figure on right) - 2) **NIR spectrometry:** measure spectrum of thermal spray plasma, use to calibrate imaging pyrometer and to study particle chemistry changes in spray plume - 3) **modulation reflectometry:** develop technique to evaluate surface quality before and after coating with thermal spray - 4) **thermal imaging of particles and coatings:** validate imaging pyrometer and use to study thermal spray plume and coating $Frame\ sequence\ from\ schlieren\ strobe\ video\ of\ twin\ wire\ arc\ spray.$ - 5) holography to study impact phenomena: provide data for modeling of particle impacts - C) Sensors: Develop Tools for Quantitative Measurements in Real-time for Feedback Control - 1) **modulation reflectometry:** provide real-time sensor for measuring substrate and coating surface quality - 2) **thermal imaging of particles and coatings:** provide real-time sensor for measuring thermal spray plume and coating characteristics for use in advanced process control system - 3) **anode wear sensor:** use time resolved voltage and/or acoustic measurements to monitor anode wear - D) Processing: Develop And/or Implement Thermal Spray Equipment to Provide Reproducible Coatings - 1) radial and axial feed DC plasma thermal spray gun - 2) wire feed DC arc spray gun - 3) RF plasma spray gun - 4) **process parameter studies:** effects of anode wear and powder size on temperature and velocity and, therefore, coating properties - 5) pure DC powered plasma spray: study effect of battery supplied current on plasma characteristics - 6) thermal spray process controller: use new sensors to provide feedback information to control thermal spray gun power, powder feed, and motion. - E) Modeling: Develop Tools for Modeling Fluid Flow of Thermal Spray Systems - 1) **CFD of radial and axial powder feed plasma spray guns:** study effects of gun geometry, gas flow rates, arc power, and powder feed rate on particle temperature and velocity - 2) CFD of particle impact: provide particle impact diagnostic data for collaborative work with INEL