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Semi-analytical LLG Solver Using Effective Field
Time Derivative
D. G. Porter, M. J. Donahue

I. Abstract

For fixed H , the Landau-Lifshitz equation

dm

dt
=

γ

1 + α2
m × H −

αγ

1 + α2
m × H × m, (1)

has analytic solution, expressed in spherical coordinates,

φ(t) = |γH |t, (2)

θ(t) = 2 tan−1(tan(θ(0)/2) exp(−|αγH |t)). (3)

Repeated application over short enough time intervals leads
to a semi-analytic solver [1] for time-varying H . Any field
adjustment H̃ = H + λm creates no change in torque

m × H̃ = m × H ; (4)

thus, no change in the solution of (1). Selecting field
adjustments to support longer semi-analytic time inter-
vals can improve efficiency [2]. The simple adjustment
H̃ = H − (H · m)m = m × H × m can be computed from
available data without increasing storage or computational
requirements. These are explicit, norm-preserving solu-
tion methods with clear extensions to predictor-corrector
schemes.

Here we extend this approach to consider polynomial
time variations of H , constrained by dH/dt. Computing
dH/dt costs the same as computing H . Trajectories of m
corresponding to time-varying H are computed numerically
building on (2) and (3). A predictor-corrector scheme as-
sumes linear H to predict m at the end of the time step,
computes H there, and then computes corrected values of
m assuming a quadratic H .

Fig. 1 graphs the accuracy of these methods as a function
of time step with comparison to conventional Runge-Kutta
solvers. A 240 nm ×240 nm ×12 nm Permalloy plate is
simulated using 4 nm cubic cells. A field (1, 2, 10) mT
is applied to an initial uniform magnetization slightly off
the x axis, and 200 ps of response are simulated. Error
is computed as the difference of the final average my from
that computed by a baseline converged solution. The solver
using dH/dt is third order in the time step. It is also able to
take longer time steps on the same problem than both the
semi-analytic method built on H̃ = m×H×m and a second
order Runge Kutta solver before experiencing the total loss
of accuracy indicating numerical instability. Longer time
steps while maintaining stability and accuracy indicate a
more efficient calculation. Fig. 2 displays the same data
as Fig. 1, but scales the horizontal axis by the number of
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Fig. 1. Error performance as function of time step.

field evaluations. This offers a clearer comparison of the
tradeoff between accuracy and stability and computational
effort.
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Fig. 2. Error performance as function of time step and field evalua-
tions.
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