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Numerical solutions to Fokker-Planck equation for
magnetic nanoparticles

D. P. Ansalone, C. Ragusa, M. d’Aquino, C. Serpico, G. Bertotti

I. INTRODUCTION

The study of thermal fluctuations in magnetization dy-
namics is particularly relevant to long-term stability of in-
formation recorded in the magnetic supports. From the
theoretical point of view, thermal fluctuations in magne-
tization dynamics are usually taken into account by aug-
menting the effective field in the Landau-Lifshitz-Gilbert
equation with an isotropic Gaussian white noise random
field [1]. If the magnetic particle is sufficiently small, it can
be assumed that the magnetization is spatially uniform and
its direction fluctuates because of thermal agitation. In this
framework, a complete analysis of this phenomenon can be
carried out through a probabilistic approach by solving the
associated Fokker-Planck (FP) equation that provides the
transient evolution of the probability density [1]. In this
paper we present two different methods to achieve relevant
numerical results. The first method is an algebraic ap-
proach that uses integral variables defined on a cells’ com-
plex [2]. The two variables that completely describe the
problem are the probability P defined in each cell and the
flowed probability ) defined on the boundary of each cell.
The use of such direct algebraic description is interesting
because it is no longer necessary to carry out discretization
of the FP equation. The second method is a spectral col-
location scheme that interpolates the probability density
in the parameters space using Lagrange polynomials on a
grid of points [3].

II. NUMERICAL RESULTS

In order to compare the two numerical formulations de-
scribed above, we considered the analysis of thermal fluc-
tuations for a small magnetic nanoparticle. The material
parameters are: M, = 8-10° A/m, negligible magneto-
crystalline anisotropy, damping constant a = 0.02. We
assume temperature 77 = 300 K and no external field
applied. The chosen magnetic particle has spheroidal
shape and the ratio of the major axis to the minor one
is 3. We considered three different volumes of the particle:
Vi = 5.8178 - 1072m3, V, = 3/2-V;, and V3 = 2 - V7,
where the first case corresponds to a particle with x, vy,
and z axes length equal to 3 nm, 3 nm, and 10 nm. We
assume that the dimension of the particle is comparable
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with the exchange length and then it is expected that the
particle is single-domain. This allows one to analyse ther-
mal fluctuations by using the the Fokker-Planck equation.
In addition, for the considered geometry, the demagnetiz-
ing factors are N, = Ny = 0.4523, N, = 0.0954 and then
keg = N, — N, = 0.3569. In the following set of numeri-
cal experiments we compared the numerical calculated self-
covariance function for magnetization component m,. The
starting state corresponds to the statistical equilibrium [1].
The results are reported in Fig. 1 where a good agreement
between the two methods is apparent.
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Fig. 1. Comparison between self-covariance functions for mag-
netization component m;. Three different volumes are considered
Vi < Vo < V3. Solid line: self covariance function obtained from the
algebraic approach. The number of grid point is n = 1000. Dots:
computed self-covariance by using the spectral collocation method.
The number of grid point is 21.

REFERENCES

[1] W.F. Brown, “Thermal Fluctuations of a Single-Domain Parti-
cle”, Physical Review, vol. 130, pp.1677-1686.

[2] E. Tonti, “Finite Formulation of Electromagnetic Field,” IEEFE
Trans. on Mag., vol. 38, pp. 333-336.

[3] J. Berrut, L. Trefethen, “Barycentric Lagrange interpolation”,
SIAM Review, vol. 46, pp. 501-517.



