
 
 

I. INTRODUCTION 

The micromagnetic simulation based on the LLG equation 
is a powerful tool to analyze microscopic behavior of 
magnetic materials. However, it is difficult for the 
micromagnetic simulation to describe mesoscopic or 
macroscopic magnetic behavior because of its high 
computational cost. Several domain structure models (DSMs) 
[1]-[4] have been proposed to represent mesoscopic behavior 
of magnetic materials. This study simplifies the DSM to reveal 
basic mechanism of magnetization process. 

II. DOMAIN STRUCTURE MODEL 
The DSM consists of several domains with uniform 

magnetizations and their boundaries (domain walls). The 
magnetization state is given by the local minimization of total 
magnetic energy. The simplified DSM assumes that the 
magnetostatic field Hst is given as  

Hst = − k Mave                 (1) 
where Mave is the average magnetization and k is a 
demagnetization factor.  
 

 
Fig. 1.  Two domains.  
 

This article examines magnetization process of thin material 
with two domains as shown in Fig. 1 where (θ1, θ2) are the 
rotation angles of magnetization vectors, (λ, 1−λ) are the 
volume ratios of magnetic domains, L is the domain wall 
length, and D is the material width. The energy components 
are normalized by the anisotropic energy as  

ean = λ sin2θ1 + (1−λ) sin2θ2           (2) 
eap = − h { λ cos(θ1−θap) + (1−λ) cos(θ2−θap) }   (3) 
ew = w { 1 – cos (θ1−θ2) }2            (4) 
est = s { λ2 + 2λ(1−λ) cos(θ1−θ2) + (1−λ)2 }     (5) 
h = 2Hap / MS / κ  ,  w = lex(κ+1)1/2 / κ / D ,  s = k / κ , 
κ = 2 K1 / μ0MS

2 ,  lex = (2A/μ0MS
2) 1/2        (6) 

where ean, eap, ew, and est are the normalized energy density of 
anisotropic energy, Zeeman energy, domain wall energy, and 
magnetostatic energy, respectively; Hap is the applied 
magnetic field, θap is its direction, MS  is the magnitude of 
spontaneous magnetization, K1 is the anisotropy constant, and 

A is the exchange stiffness constant. The unknown variables 
( θ1, θ2, λ ) are determined so as to minimize the total energy 
locally.   

III. MAGNETIZATION PROCESS ANALYSIS 
Magnetization curves are obtained with the variation of h. 

Fig. 2 shows MH curves when (θap, w, s) = (5°, 1, 0.5), (5°, 
0.2, 6) where normalized average magnetization mx =  λ cosθ1 
+ (1−λ) cosθ2 is plotted. Solid lines mean solution curves of 
local energy minima (stable solutions) while dashed lines are 
for other solutions (local maxima and saddle points). When 
the effect of domain wall energy (w) is large and that of 
magnetostatic energy (s) is small, single domain type 
magnetization appears as shown in Fig. 2(a). When w is small 
and s is large, gradual magnetization appears as in Fig. 2(b). 
The linear magnetization for small h in Fig. 2(b) results from 
the 180° domain wall motion of which solution is given as 

4s ( λ − 1/2 ) − h cosθap = 0 .          (7) 
Fig. 3 illustrates the domain structures for (θap, w, s) =  (5°, 0.2, 
6). The 180° domain wall motion is seen for small h whereas 
large h induces the rotation of magnetization.  

 

   
Fig. 2.  Magnetization curves.  

 
Fig. 3.  Domain structures obtained by the simplified DSM. 
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